[過去ログ]
純粋・応用数学(含むガロア理論)2 (1002レス)
純粋・応用数学(含むガロア理論)2 http://rio2016.5ch.net/test/read.cgi/math/1592578498/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
83: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/20(土) 21:24:38 ID:OXXW5633 >>55 追加(^^ ”一般の位相空間では点列収束の一意性とハウスドルフ性や点列コンパクト性とコンパクト性などの条件は微妙に差がありますが、これの点列のところをフィルターに変えるとなんとこれらは同値になります!フィルターすげえ!!というのが上の記事の主題になります。” https://cho-san.hatenablog.jp/entry/2018/06/09/234043 ちょーさんメモ出張版 気まぐれブログ 2018-06-09 位相空間上のフィルターの収束 先日位相空間論におけるフィルターの話をpdfにまとめてTwitterに投稿しました filter.pdf https://drive.google.com/file/d/1I0IfshQW5bvpnPTYIHfs5mDC5CKk38k9/view?usp=sharing 詳しい証明などは上のpdf(以下上の記事)に書いたのでここでは簡単な紹介だけしようかと思います。 フィルターとは位相空間論における「点列」を(ある意味で)一般化した概念で題にあるとおりフィルターの収束というものが位相空間において定義できます。 一般の位相空間では点列収束の一意性とハウスドルフ性や点列コンパクト性とコンパクト性などの条件は微妙に差がありますが、これの点列のところをフィルターに変えるとなんとこれらは同値になります!フィルターすげえ!!というのが上の記事の主題になります。 また上の記事ではその応用としてフィルターを用いてチコノフの定理を証明しています。この証明もフィルターを使えばずいぶんシンプルになるのでフィルター強ええ!!!というのがわかります。 もう少し具体的な話をしましょう。位相空間X上の点列{xn}が点x∈Xに収束することの定義は以下の通りでした。 ∀U∈N(x) ∃N∈N ∀n∈N n>=N⇒xn∈U ただしN(x)はxの近傍系です。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592578498/83
84: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/20(土) 21:25:32 ID:OXXW5633 >>83 つづき ここでFN={xn?n>=N}とおいてみましょう。すると上の収束の定義は次のように書き換えられます。 ∀U∈N(x) ∃N∈N FN⊂U これがフィルターで書いた場合の収束であり、上の記事の中でいう命題2.3です。つまりフィルター基底B={FN?N∈N}の収束をみているわけです。 このように点列の収束は集合の包含関係で書き換えられます。さらにこの形で書けばFNが点列である必要すらなくね?という発想に至りこれを一般の集合で書き直すことでフィルターの定義にたどり着きます。 (この辺りの「具体的な抽象化の過程」は上の記事では触れなかったのでここで書いておくことにしました。) フィルターの感覚はだいたいそんな感じです。こうして定義されたフィルターを用いると最初に書いたような強い結果が色々得られるのですがその辺の詳しいところは上の記事を見てください。 今回なぜ自分が上の記事を書いたかというとフィルターについての初等的な文献があまりないような気がしたからです。それでTwitterで「フィルターのpdf書いたら需要ある?」みたいなツイートをしてみたら思ったより反応があったので書くことにしました。 実際、自分がフィルターについて勉強したいと思ったときもどの本に載っているのかわからず、適当な位相空間の本を開いてみるも見つからず、結局大学の本棚にあったブルバキを読んで勉強しました。 森田先生の位相空間と内田位相は位相空間論の参考にしただけでフィルターは出てきませんし、松坂位相でも演習問題で一瞬でてくるだけでしたし、位相のこころでは説明がされてますがこれは読み物なので証明などは詳しくされていません。 また論理と位相ではフィルターについて扱われていますがこれは順序集合におけるフィルターの話(束論での扱い)なので位相空間上での収束などは書かれていませんでした。 要するに上の記事はほとんどブルバキを参考に書かれています。 「クセがある」と名高いブルバキの内容を現代的な記法で書き直し、チコノフの定理を焦点にまとめ直しました。 解析系や幾何系に進んでいるとフィルターはメジャーな道具のように思う(?)のですがどうも文献が少ないです。もしフィルターの平易な文献があれば教えてもらえると嬉しいです。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592578498/84
87: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/20(土) 21:42:23 ID:OXXW5633 >>83-84 (引用開始) ”もう少し具体的な話をしましょう。位相空間X上の点列{xn}が点x∈Xに収束することの定義は以下の通りでした。 ∀U∈N(x) ∃N∈N ̄ ∀n∈N ̄ n>=N⇒xn∈U ただしN(x)はxの近傍系です。 ここでFN={xn?n>=N}とおいてみましょう。すると上の収束の定義は次のように書き換えられます。 ∀U∈N(x) ∃N∈N ̄ FN⊂U これがフィルターで書いた場合の収束であり、上の記事の中でいう命題2.3です。つまりフィルター基底B={FN?N∈N ̄}の収束をみているわけです。 このように点列の収束は集合の包含関係で書き換えられます。さらにこの形で書けばFNが点列である必要すらなくね?という発想に至りこれを一般の集合で書き直すことでフィルターの定義にたどり着きます。 (この辺りの「具体的な抽象化の過程」は上の記事では触れなかったのでここで書いておくことにしました。)” (引用終り) なるほど そうだったのか〜!(^^; http://rio2016.5ch.net/test/read.cgi/math/1592578498/87
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s