[‰ß‹ŽÛ¸Þ] ƒˆE‰ž—p”ŠwiŠÜ‚ÞƒKƒƒA—˜_j2 (1002Ú½)
㉺‘OŽŸ1-V
’Šo‰ðœ •KŽ€Áª¯¶°(–{‰Æ) (‚×) Ž©ID Ú½žx ‚ ‚Ú[‚ñ

‚±‚̽گÄނ͉ߋŽÛ¸Þ‘qŒÉ‚ÉŠi”[‚³‚ê‚Ä‚¢‚Ü‚·¡
ŽŸ½ÚŒŸõ —ðí¨ŽŸ½Ú žxí¨ŽŸ½Ú ‰ß‹ŽÛ¸ÞÒÆ­°
ØÛ°ÄÞ‹K§‚Å‚·¡10•ª‚قǂʼn𜂷‚é‚̂Ť‘¼‚ÌÌÞ׳»Þ‚Ö”ð“‚Ä‚­‚¾‚³‚¢¡
134
(3): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 2020/06/21(“ú)09:05 ID:W0WIc7wX(1/4) AAS
>>11 •â‘«
> ‚RDŒ»‘㔊w‚É‚¨‚¢‚Ä‚ÍAƒÃƒÂ‚Í ˆÊ‘Š‹óŠÔ˜_‚Æ‚©Œ—˜_‚Æ‚©A‚»‚Ì‚½Žû‘©‚ðˆµ‚¤ ‚æ‚è‚“x‚ÈA‚©‚•ª‚èˆÕ‚­–{Ž¿“I‚ÈŠT”O‚Å’u‚«Š·‚¦‚ç‚ê‚Ä‚¢‚é

•â‘«
‚Ü‚ A‰º‹L‚Ìh‹ÉŒÀ ç—t‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È ¼“c–ÎŽ÷ (2012?) h‚Å‚àA‚Ç‚¼
h’Êí‚Ì”—ñ‚̋ɌÀh‚ªAŒ—˜_“IŽ‹“_‚©‚ç’ŠÛ‰»‚³‚êAh–{Ž¿“I‚ÈŠT”O‚Å’u‚«Š·‚¦‚ç‚ê‚Ä‚¢‚éh‚Á‚Ä‚±‚Ƃł·iOOG

ŠO•”ØÝ¸[html]:www.math.s.chiba-u.ac.jp
Ž–¼: ¼“c –ÎŽ÷ (‚܂‚¾ ‚µ‚°‚«)
È7
192
(2): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 2020/06/21(“ú)21:46 ID:W0WIc7wX(2/4) AAS
>>134 ’ljÁ

‚æ‚¢‚æ
ƒncatlab„
hThe limits of category theory are a great generalization of an analogy with the limits discussed here.
It turns out, however, that limits in topological spaces (at least) can be viewed as category-theoretic limits.
For now, see this math.sx answer.i‰º‹Ljh
iŽQlj
È20
193
(1): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 2020/06/21(“ú)21:50 ID:W0WIc7wX(3/4) AAS
>>192 ’ljÁ

Relation to limits in the sense of category theory
The limits of category theory are a great generalization of an analogy with the limits discussed here.
It turns out, however, that limits in topological spaces (at least) can be viewed as category-theoretic limits.
For now, see this math.sx answer.

ƒDeepL–ó„
ƒJƒeƒSƒŠ—˜_‚̈Ӗ¡‚ł̌ÀŠE‚Ƃ̊֌W
È3
196: Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 2020/06/21(“ú)21:57 ID:W0WIc7wX(4/4) AAS
>>192

•â‘«
‰º‹L‚Ìyahoo‚æ‚è‚ÍA
ã‹L‚Ì math.stackexchange ‚Ì•û‚ª
ˆ³“|“I‚ÉM—p‚Å‚«‚é
‚Æ‚¢‚¤‚©Anlab ‚©‚çŽQÆ‚³‚ê‚Ä‚¢‚é‚à‚ñ‚ÈiOO

iŽQlF‰º‹L‚̓_ƒ‚Å‚·‚ªj
È15
㉺‘OŽŸ1-VŠÖŽÊ”——õÝžx—ð
½Úî•ñ ÔÚ½’Šo ‰æ‘œÚ½’Šo —ð‚Ì–¢“Ç½Ú AA»ÑȲÙ

‚Ê‚±‚ÌŽè ‚Ê‚±TOP 0.036s