[過去ログ]
なんで掛け算の順序を交換しても答えが同じなの? (381レス)
なんで掛け算の順序を交換しても答えが同じなの? http://rio2016.5ch.net/test/read.cgi/math/1589008460/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
14: 132人目の素数さん [] 2020/05/09(土) 22:30:14.99 ID:wuUnu6Xu 自然数と足し算の定義は既知とする a + b = b + aも既知とする 自然数 m と 自然数 n について m x n を m を n 回足した数と定義する <補題1> 任意の自然数 p, q, rに対し、 p x (q + r) = p x q + p x r 証明 左辺は定義より pをq + r 回足した数 これは、 pを q回足した数に、 pを r回足した数を加えた数である。 右辺は、 pを q回足した数に、 pを r回足した数を加えた数である。 したがって左辺と右辺は等しい <補題2> 任意の自然数 p, q, rに対し、 (p + q) x r = p x r + q x r 証明 左辺は定義より p + qをr回足した数である。これは結局、pをr回足した数にqをr回足した数を加えた数になる 右辺は、 pをr回足した数に、 qをr回足した数を加えた数である。 したがって左辺と右辺は等しい <定理 1> 任意の自然数 p, q, r, sに対し、 (p + q) x (r + s) = p x r + p x s + q x r + q x s 証明 補題 1補題2より成立する 定理 2 任意の自然数 p, qに対し p x q = q x p 証明 帰納法で証明する p = 1, q = 1については成立する p = m、q = nで成り立てば すなわち m x n = n x mであれば p = m + 1、q = nに対し (m + 1) x n = m x n + n n x (m + 1) = n x m + n ∴ (m + 1) x n = n x (m + 1) p = m、q = n + 1に対し m x (n +1) = (n+1) x m よって、任意の自然数についてp x q = q x pが示された http://rio2016.5ch.net/test/read.cgi/math/1589008460/14
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s