[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
946
(2): 2020/03/29(日)04:37 ID:JlXmRJZe(1/4) AAS
>>942
図から、円の直径 10 を求めて、円に内接する3辺の長さ 6、8、10(直径) の直角三角形の辺の長さ8を求める。
2辺の長さが8に等しい二等辺三角形の底辺の長さを 2y y>0 とする。
図から、対頂角が鈍角の互いに相似な三角形について、8:x=2y:(10-8)=y:1 ∴ xy=8。
図から、円に内接する円周角が等しく互いに相似な三角形の性質と三平方の定理より、
√( (√(8^2-y^2))^2 + (x+y)^2 ):x=6:2=3:1
∴ 3x=√( (√(8^2-y^2))^2 + (x+y)^2 )。
省2
949: 2020/03/29(日)09:31 ID:JlXmRJZe(2/4) AAS
>>946は直径を通らなくても、二等辺三角形の3辺の長さが分かれば適用出来ることがあるから、或る意味で有力な求め方になっている。
951: 2020/03/29(日)10:22 ID:JlXmRJZe(4/4) AAS
>>950の訂正:

>>846>>946
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s