[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
880(2): 2020/03/23(月)11:47 ID:Q1ISEmaR(1/2) AAS
>>828
nが偶数の場合
P[win] = (n+2)/2 * 2!n!/ (n+2)! = 1/(n+1) {n+2個をシャッフルして偶境界に白白}
E[n; win] = ( 1 + 2 + ... + (n+2)/2 ) * 2!n!/ (n+2)! = ...
E[n; lose] = (1*2n + 2*2(n-2) + .... + n/2*2*2 ) * 2!n!/ (n+2)! {n+2個をシャッフルして偶境界に黒白or白黒、その後方に白}
= ...
nが奇数の場合も同様
省5
885: 2020/03/23(月)15:29 ID:mjeu1Sts(3/3) AAS
>>884
復元なら簡単すぎでしょうから>>880は非復元で解いてる
887(1): 2020/03/23(月)19:49 ID:d4Un7xXa(1) AAS
>>880
どうでもいいことだが、
1*N + 2*(N-1) + ... +(N-1)*2 + N*1 = N(N+1)(N+2)/6
の別証明。
右辺は C(n+2,3) であるが、これを次のように考える。
1,2,3,4,…,n+2 のn+2個の数から3つ選ぶ選び方については
選んだ3つの数を左、真ん中、右と呼ぶことにすると、
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s