[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
718
(3): 2020/03/18(水)20:24 ID:lfw++vLD(1) AAS
>>715-716
たぶん式はあってるけど、「nによらない定数」って日本語が間違ってる。

1つめの有理式は、分母を複素数の範囲で(x-a)(x-b)と因数分解すると
aやbは1の6乗根となる。
そして1/(x-a)と1/(x-b)のべき級数展開を考え、2つのべき級数展開の積
であることからx^3、x^6、x^9の係数を求めてみる。

2つめの有理式の3倍を部分分数分解する。
省1
719
(2): 2020/03/18(水)22:42 ID:GwJqdJPg(1) AAS
>>718
(1)を計算しましたが確かに(-1)^nになってnに依存しないとは言えませんね。ありがとうございます。
(2)の計算、(多項式)×(多項式)からn次の係数をどう出そうか方針が立たないです。分かる方お願いします。

どうやら数学検定1級の計算問題らしいです。
720: 2020/03/18(水)23:22 ID:FKTohgBq(2/4) AAS
>>719
3/(1-x-2xx) = 3/((1-2x)(1+x)) = 2/(1-2x) + 1/(1+x)
 = 2/(1-(2x)) + 1/(1+(-x)) = 2* (1 + (2x) + (2x)^2 + ... ) + (1 + (-x) + (-x)^2 + ... )
 = ...
>>718 の「部分分数分解」がヒントですね
727
(1): 2020/03/19(木)04:45 ID:o+4AW6nT(1/2) AAS
>>719 >>722
>718です。べき級数展開の積でやるのはこんな感じです

まず、 1/(1-x+x^2)=1/{(x-a)(x-b)} と因数分解すると
a=(1+i√3)/2=e^(2πi/6), b=(1-i√3)/2=e^(-2πi/6) である
ここで a^3=-1 と 1/b=a に注意しておく

1/(x-a)=1/(-a) * 1/{1-(x/a)}
=1/(-a)*{1+(x/a)+1+(x/a)^2+1+(x/a)^3+…}
省17
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s