[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
683
(1): 2020/03/16(月)20:32 ID:bNeBdUF1(2/2) AAS
>>674 (i)
たぶん
 1/{2π(k^2 + n^2)} < ∫[(k-1)π,kπ] (sin x)^2 /{x^2 + (nπ)^2} dx < 1/{2π[(k-1)^2 + n^2]},
だろうね。
687
(1): 2020/03/17(火)03:07 ID:CmDsCyUw(1/4) AAS
>>683
分子は x=(k-1/2)π に関して左右対称、を利用すれば
 ∫[(k-1)π,kπ] (sin x)^2 /{x^2 + (nπ)^2} dx = 1/{2π[(k-1/2)^2 + c + n^2]},
ただし 0 < c < 1/4,
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s