[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
651(4): 2020/03/15(日)13:21 ID:nyblZrKy(2/3) AAS
Excelで少し試しただけだが、
>>641
の命題を、次のように書き換えても正しそうかな?
(元の命題はq=2に相当)
「2以上の整数qを1つ固定する。
mを任意の1以上の整数とする。n=qm+1とおき、n-1個の数√n,√2n,√3n,...,√(n-1)nのうち、整数部分がqで割り切れるものの個数はm個である」
652: 2020/03/15(日)15:41 ID:cOtagSUy(2/5) AAS
>>651おお〜。こちらも少し試してみましたが成り立ってそうです。そっちで僕も考えてみます。
656: 2020/03/15(日)19:05 ID:ux99Nd6q(1) AAS
>>651
正しそう
証明に取り掛かってみます
658(4): 2020/03/15(日)19:36 ID:cOtagSUy(3/5) AAS
>>651 文字をちょっと変えてもっと一般化して、
nを正の偶数、[]は床関数として、
「数列a(k)=[√{k(n+1)}] 1≦k≦n、
数列b_i(k)≡a(k) (mod i) i|n,0≦b_i(k)≦i、
N{k:b_i(k)=j}でb_i(k)=jとなるkの個数を表すと、
N{k:b_i(k)=j}+N{k:b_i(k)=i-j}=2n/iが成り立つ。」
でもいけそうですね。>>641はi=2の場合、>>651はj=0の場合。
省1
678(1): 2020/03/16(月)19:16 ID:8zVl3xLP(1/3) AAS
>>651を書いたものです
>>658
b_i(k)の定義がよくわからないです…。
a(k)は√の整数部分ですよね。b_i(k)はa(k)をiで割った余り?
だとすると0≦b_i(k)≦i-1か1≦b_i(k)≦iのどちらかのような気がするんですが
j=0のときはb_i(k)=0とb_i(k)=iを両方考えるんですか?
あと、>>651ではnは偶数でも奇数でもOKである、という予想です。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s