[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
641
(4): 2020/03/15(日)08:42 ID:cOtagSUy(1/5) AAS
「任意の3以上の奇数nについて、n-1個の数√n,√2n,√3n,...,√(n-1)nのうち、整数部分が偶数であるものの個数と奇数であるものの個数は等しい」
成り立ってるっぽいんですけど証明ってありますか?
649: 2020/03/15(日)12:13 ID:nyblZrKy(1/3) AAS
>>641
おおー、確かに成り立ってるっぽい!
証明はわからないが、面白いな
651
(4): 2020/03/15(日)13:21 ID:nyblZrKy(2/3) AAS
Excelで少し試しただけだが、
>>641
の命題を、次のように書き換えても正しそうかな?
(元の命題はq=2に相当)

「2以上の整数qを1つ固定する。
mを任意の1以上の整数とする。n=qm+1とおき、n-1個の数√n,√2n,√3n,...,√(n-1)nのうち、整数部分がqで割り切れるものの個数はm個である」
658
(4): 2020/03/15(日)19:36 ID:cOtagSUy(3/5) AAS
>>651 文字をちょっと変えてもっと一般化して、
nを正の偶数、[]は床関数として、
「数列a(k)=[√{k(n+1)}]  1≦k≦n、
数列b_i(k)≡a(k) (mod i) i|n,0≦b_i(k)≦i、
N{k:b_i(k)=j}でb_i(k)=jとなるkの個数を表すと、
N{k:b_i(k)=j}+N{k:b_i(k)=i-j}=2n/iが成り立つ。」
でもいけそうですね。>>641はi=2の場合、>>651はj=0の場合。
省1
661
(3): 2020/03/15(日)21:11 ID:kVh6ZCdm(1/2) AAS
>>641
実際にチェックしてみたところ、n=46341以下では、成立していると確認できたけど、
n=46343以上では、不成立っぽい。
(n=46343の時、奇数が23169個で、偶数が23173個)

・誤差の可能性を疑ったけど、単独で発生しているのではなく、n=46343以上で連続して不成立
・[sqrt(i*n)]と[i*n/sqrt(i*n)]が一致するかのチェックも通過

どなたか、検証お願いします。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.930s*