[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
603(2): 2020/03/11(水)19:37 ID:plq6CXNf(1/2) AAS
>>601
教科書の方には「lが奇数の場合、
Aₗ=(2l+1)∫₀¹Pₗ(x)dx [ただしPₗ(x)はl次のルジャンドル多項式]
」
に
「Rodriguesの公式を利用すると、積分が計算できて
Aₗ=(-1/2)⁽ˡ⁻¹⁾ᐟ² ((2l+1)(l-2)!!)/(2((l+1)/2)!)
省3
604(1): 2020/03/11(水)20:12 ID:nurrYDlF(1) AAS
>>603
とりあえずPn(x)が(1-2xt+t^2)^(-1/2)のt^nの係数らしいから
∫[0,1] (1-2xt+t^2)^(-1/2) dx を計算してそれのn次の係数だせばいいんじゃない?
積分は簡単だし、nじすの係数は一般化二項定理で出せるみたいだし。
605(1): 2020/03/11(水)20:25 ID:y9Jt3QH1(5/5) AAS
>>603
m:=2k + 1 {l は 1 と見分けにくいので m にした}
d^{m-1}/dx^{m-1} (x²-1)^m について
(x²-1)...(x²-1) 各項の微分が
「0階項と1階項が同時にある場合」 or「 3階以上の項がある場合」 は消えるので
2階微分項のみからなるパターンを考えればよい.
2階微分のペアリング数: (m-2)!!
省10
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s