[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
579(4): 2020/03/10(火)21:08 ID:B4p4PHRk(1) AAS
実数a,b,cは
(ア)a>0b>0c>0
(イ)(1/a)+(1/b)+(1/c)=1/abc
を満たす。
A=√(1+a^2)+1-a
B=√(1+b^2)+1-b
C=√(1+c^2)+1-c
省2
581(1): 2020/03/10(火)22:32 ID:0EGlKotV(2/2) AAS
>>579
0
586(3): 2020/03/11(水)02:45 ID:y9Jt3QH1(1/5) AAS
>>579 , >>581
これどうやって示すのか誰か教えてください.
x+y+z=π, tan(x) + tan(y) + tan(z) = tan(x)tan(y)tan(z)
a = cot(x), A = ... =1/sin(x) + 1 - cot(x), B= . . .
これで行くのかなと予想は立てたもののスマートな式変形が思い浮かびません.
588(1): イナ ◆/7jUdUKiSM 2020/03/11(水)05:35 ID:LbRSBTGq(2/3) AAS
前>>589
>>579(前半)
(イ)よりbc+ca+ab=1──?
AB+BC+CA-2(A+B+C-1)
={√(1+a^2)+1-a}{√(1+b^2)+1-b}+{√(1+b^2)+1-b}{√(1+c^2)+1-c}+{√(1+c^2)+1-c}{√(1+a^2)+1-a}-2[{√(1+a^2)+1-a}+{√(1+b^2)+1-b}+{√(1+c^2)+1-c}-1]
={√(1+a^2)+1-a}{√(1+b^2)+1-b}+{√(1+b^2)+1-b}{√(1+c^2)+1-c}+{√(1+c^2)+1-c}{√(1+a^2)+1-a}-2{√(1+a^2)+1-a+√(1+b^2)+1-b+√(1+c^2)+1-c-1}
={√(1+a^2)+(1-a)}{√(1+b^2)+(1-b)}
省16
589(2): イナ ◆/7jUdUKiSM 2020/03/11(水)05:38 ID:LbRSBTGq(3/3) AAS
前>>588(前半)
前々>>579(後半をやる)
?を代入すると、
=√(1+a^2)(1+b^2)+(1-a)√(1+b^2)+(1-b)√(1+a^2)
+√(1+b^2)(1+c^2)+(1-b)√(1+c^2)+(1-c)√(1+b^2)
+√(1+c^2)(1+a^2)+(1-c)√(1+a^2)+(1-a)√(1+c^2)
-2{√(1+a^2)+√(1+b^2)+√(1+c^2)+2-a-b-c}
省18
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s