[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
503
(2): 2020/03/07(土)10:33 ID:bfEFgg5v(1) AAS
>>454
1≦t<u<v, t+u+v=n,
を満たす (t,u,v) が q(n) とおりある、とする。

t>1 の場合は
 (t-1,u-1,v-1) は 1≦ t-1 < u-1 < v-1 を満たし、和が n-3 となる。
 q(n-3) に等しい。

t=1 の場合は
省12
514: 2020/03/07(土)13:59 ID:J4LoV2eb(3/3) AAS
>>503
回答ありがとうございます。
今、理解に努めています。
531: 2020/03/08(日)08:38 ID:xYlNxYaj(1/3) AAS
>>503
U := {(t,u,v) | t+u+v=n, 1≦t,u,v}
#U = C[n-1,2] = (n-1)(n-2)/2,

#{(t,u,v) | t+u+v=n, 1≦t=u<v} = [(n-1)/3],
#{(t,u,v) | t+u+v=n, 1≦t<u=v} = [(n-1)/2] - [n/3],
#{(t,u,v) | t+u+v=n, 1≦t=u=v} = [n/3] - [(n-1)/3] = 1 - d(n),
辺々たすと
省11
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.026s