[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
371
(4): 2020/03/02(月)02:08 ID:WgyyNlAB(1) AAS
AB=4、BC=6、CA=5の△ABCの外接円をKとする。
またK上に点Dがあり、BDはKの直径である。
点Aを含まない側のKの弧の上にBE=5となる点Eをとり、EからBDに垂線を下ろした交点をHとする。
AHの長さを求めよ。
373
(2): 2020/03/02(月)12:52 ID:y3F0W9KI(1/2) AAS
>>371
a:=BC=6, b:=CA=5, c:=AB=4
AH^2 = c*c + BH^2 - 2*c*BH* cos∠ABH {余弦定理}
cos∠ABH = cos∠ABD = c/BD = c/b*(b/BD)=c/b*sin∠B {正弦定理}
BH = BE*cos∠EBH = b*sin∠BDE = b*sin∠B
cos∠B = (a*a+c*c-b*b)/(2*a*b) {余弦定理}
よって
省3
374
(2): 哀れな素人 2020/03/02(月)16:16 ID:L7+8rGTp(1) AAS
>>371の初等幾何的証明
トレミーの定理により外接円の直径は16/√7
あとは順次計算するだけ。
答えは>>373に同じ。
378
(1): イナ ◆/7jUdUKiSM 2020/03/02(月)21:30 ID:6RLywf+z(1/2) AAS
>>314
>>371
余弦定理より、
cosA=(4^2+5^2-6^2)/2・4・5
=25/40
=5/8
sinA=√(64-25)/8
省27
379
(3): イナ ◆/7jUdUKiSM 2020/03/02(月)23:39 ID:6RLywf+z(2/2) AAS
>>378訂正。
>>371
余弦定理より、
cosA=(4^2+5^2-6^2)/2・4・5
=5/40
=1/8
sinA=√(64-1)/8
省24
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s