[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
315(1): 2020/02/26(水)08:17 ID:Vn/E81gT(1/2) AAS
>>313
任意の x (∈ A_p) に対して局所座標系(U,φ)とそこに含まれる開球S[x] (中心:φ(x)) を考える.
V[x] := φ^{-1}(S[x]) とする. これは M上の開集合である.
任意の y (∈ V[x]) に対して φ(x)とφ(y)を結ぶパラメータ直線 line(t) は S[x] に含まれ,
pからx に至る曲線に φ^{-1}(line(t)) 接ぎ足せば y ∈ A_p .
よって V[x] ⊂ A_p であり, A_p = ∪{x ∈ A_p} V[x] は開集合である.
356: 2020/02/29(土)10:53 ID:EMe68izk(1) AAS
>>315
なるほど
Φは可微分だから写した直線も可微分になってつなげればいいんですね
ありがとうございます
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.057s