[過去ログ]
分からない問題はここに書いてね458 (1002レス)
分からない問題はここに書いてね458 http://rio2016.5ch.net/test/read.cgi/math/1581260776/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
722: 132人目の素数さん [sage] 2020/03/18(水) 23:40:24.36 ID:FKTohgBq > 2つのべき級数展開の積 であることからx^3、x^6、x^9の係数を求めてみる。 積を求める方針でもできるのですね... って計算難しいような... 部分分数分解なら 1-x+xx = (1+xxx )/(1+x) = (e^{+πi/3} - x) (e^{-πi/3} - x) より 1/(1-x+xx) = (1/(2i*sin(π/3)))*( e^{+πi/3}/(1-e^{+πi/3}x) - e^{-πi/3}/(1 - e^{-πi/3}x) ) x^{3n} の係数 (1/(2i*sin(π/3)))* e^{+πi/3}* (-1)^n - e^{-πi/3}*(-1)^n = (-1)^n http://rio2016.5ch.net/test/read.cgi/math/1581260776/722
727: 132人目の素数さん [] 2020/03/19(木) 04:45:40.82 ID:o+4AW6nT >>719 >>722 >718です。べき級数展開の積でやるのはこんな感じです まず、 1/(1-x+x^2)=1/{(x-a)(x-b)} と因数分解すると a=(1+i√3)/2=e^(2πi/6), b=(1-i√3)/2=e^(-2πi/6) である ここで a^3=-1 と 1/b=a に注意しておく 1/(x-a)=1/(-a) * 1/{1-(x/a)} =1/(-a)*{1+(x/a)+1+(x/a)^2+1+(x/a)^3+…} 同様に 1/(x-b)=1/(-b) * 1/{1-(x/b)} =1/(-b)*{1+(x/b)+1+(x/b)^2+1+(x/b)^3+…} =1/(-b)*{1+(x/b)+1+(x/b)^2+1+(x/b)^3+…} =(-a)*(1+ax+1+(ax)^2+1+(ax)^3+…) すると、 1/(x-a) * 1/(x-b) のx^(3n)の項は、 (x/a)^(3n)*1+(x/a)^(3n-1)*ax+(x/a)^(3n-2)*(ax)^2+ … +(x/a)^2*(ax)^(3n-2)+(x/a)*(ax)^(3n-1)+(ax)^(3n) よってこの係数は (1/a)^(3n)+(1/a)^(3n-2)+(1/a)^(3n-4)+ … +a^(3n-4)+a^(3n-2)+a^(3n) =(1/a)^(3n)*{1+a^2+a^4+ … +a^(6n-4)+a^(6n-2)+a^(6n)} =(1/a)^(3n)*{1-(a^2)^(3n+1)}/(1-a^2) =1/(-1)^n *{1-a^(6n)*a^2}/(1-a^2) =(-1)^n ある分野ではこんなべき級数展開の積をばんばんやるのですが、 でも、この問題では>723の方がエレガントですね http://rio2016.5ch.net/test/read.cgi/math/1581260776/727
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s