[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
727(1): 2020/03/19(木)04:45 ID:o+4AW6nT(1/2) AAS
>>719 >>722
>718です。べき級数展開の積でやるのはこんな感じです
まず、 1/(1-x+x^2)=1/{(x-a)(x-b)} と因数分解すると
a=(1+i√3)/2=e^(2πi/6), b=(1-i√3)/2=e^(-2πi/6) である
ここで a^3=-1 と 1/b=a に注意しておく
1/(x-a)=1/(-a) * 1/{1-(x/a)}
=1/(-a)*{1+(x/a)+1+(x/a)^2+1+(x/a)^3+…}
省17
728: 2020/03/19(木)04:50 ID:o+4AW6nT(2/2) AAS
>>727
おおう、typo…
前半の計算は、正しくは
1/(x-a)=1/(-a) * 1/{1-(x/a)}
=1/(-a)*{1+(x/a)+(x/a)^2+(x/a)^3+…}
同様に
1/(x-b)=1/(-b) * 1/{1-(x/b)}
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s