[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
775
(1): 2020/03/21(土)13:34 ID:Ysr8avom(1/10) AAS
>>769
>同値類の代表元の存在も認める
なぜ?
791: 2020/03/21(土)15:11 ID:Ysr8avom(2/10) AAS
>>778
はい。
選択公理の仮定がどこにも書かれてなかったので糺しました。
794
(1): 2020/03/21(土)15:18 ID:Ysr8avom(3/10) AAS
>>788
>その100個のどれが勝つ物か負ける物か
>予め決まっていてもそれは知らされていないんだから
>確率分布には成らない
>情報が足りないんじゃ無い?
「回答者は列の番号を1つだけ選ぶ」でランダムに選べば一様分布になる。
つまり
省1
803
(1): 2020/03/21(土)16:53 ID:Ysr8avom(4/10) AAS
>>802
P(勝ち)≧99/100じゃだめなん?
821
(1): 2020/03/21(土)19:18 ID:Ysr8avom(5/10) AAS
1.
箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
省1
822: 2020/03/21(土)19:19 ID:Ysr8avom(6/10) AAS
2.
 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
省9
823: 2020/03/21(土)19:20 ID:Ysr8avom(7/10) AAS
3.
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,S^lOOを成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1〜100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
省11
825: 2020/03/21(土)19:22 ID:Ysr8avom(8/10) AAS
4.
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」

「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
省2
826: 2020/03/21(土)19:22 ID:Ysr8avom(9/10) AAS
5.
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
省16
834
(1): 2020/03/21(土)22:02 ID:Ysr8avom(10/10) AAS
>>832
アンタの望みの゛正確な問題゛は>>821以降にあげといたよ
ぶつぶつ言ってないで解いてみたら?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s