[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
593(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:42 ID:TMbOZsnt(10/22) AAS
>>450 補足
<時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
広中−岡のエピソードの教訓により、さらに時枝を抽象化して(余計な要素を省いて) 考えてみよう
いま、問題の出題された数列
可算無限数列X:X1,X2,・・Xd,Xd+1,・・
に対し
無関係な人が数列を作ったとする
省26
594(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:43 ID:TMbOZsnt(11/22) AAS
>>593
つづき
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s^k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rDと賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
外部リンク:ja.wikipedia.org
広中平祐
省4
595(1): 2020/03/22(日)11:53 ID:+SjNGkOL(1/10) AAS
>>593
>3.そして、2列だから、確率 P(d<d')=1/2 というけれど、2列関係ないでしょ?!w(^^;
だから時枝はそんなこと言ってないと何度言えばw
おまえホント頭悪いね
597(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:44 ID:TMbOZsnt(12/22) AAS
>>593 補足
>無関係な人が数列を作ったとする
>可算無限数列Y:Y1,Y2,・・Yd',Yd'+1,・・
さて さらに、この人(以下、”おっさん”と称する w)
が、もっと数列を作ったとする
先の数列を Y1として
追加数列は
省20
600(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:54 ID:TMbOZsnt(14/22) AAS
>>595-596
>>593より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;
<時枝を抽象化して(余計な要素を省いて) 考えてみよう〜!>
601: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:56 ID:TMbOZsnt(15/22) AAS
>>600 訂正追加
>>593より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;
↓
>>594より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;
かな(^^
606(1): 2020/03/22(日)14:14 ID:OFMTPL9H(1/8) AAS
>>593 >>597
出題の列Xを固定するなら、的中確率はn/n+1じゃなくて1だけど
(証明)
列Xの決定番号をd
開ける項の番号をm
とする
d<=mなら代表元と一致
省5
625(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/23(月)07:54 ID:8hlHRLPg(1) AAS
>>597 補足説明
(引用開始)
ここで、出題の列Xと無関係な
見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
>>593と同様に
省18
631(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:52 ID:1Hky7X6d(1/5) AAS
>>625 追加
(>>597より 引用開始)
ここで、出題の列Xと無関係な
見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
>>593と同様に
省17
638: 2020/03/24(火)22:08 ID:RQgrFGVd(2/2) AAS
>>631
バカに質問w
なんで↓が成立すると思ってるの?
>ここで、出題の列Xと無関係な
> 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
> P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
> dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
省5
749(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/28(土)12:43 ID:MRwZqC/h(3/5) AAS
(>>593より)
<時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
により、時枝の複数列の比較は、数学的には本質ではない ことは、すでに示した
さて、時枝の手法は、ある方法で、大きな数d'を与えて
問題の数列の決定番号dに対し d<d' とできれば
列Xにおいて、Xd'+1から先のしっぽの箱を開けて
列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中できるというもの
省23
750: 2020/03/28(土)13:08 ID:+ARtdTH+(9/13) AAS
>>749
>(>>593より)
><時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
>により、時枝の複数列の比較は、数学的には本質ではない ことは、すでに示した
>3.そして、2列だから、確率 P(d<d')=1/2 というけれど(>>593)
言ってませんけど?
ぜんぜん解ってないね
省4
751: 2020/03/28(土)13:16 ID:+ARtdTH+(10/13) AAS
>>593)
>3.そして、2列だから、確率 P(d<d')=1/2 というけれど
2列のいずれかをランダムに選ぶから1/2が言えるのであって、選ぶ列を固定したら1/2は言えません。
ていうかなんで1/2が言えると思ってるの?バカ?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.048s