[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
130: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)21:56 ID:iKDSmfWl(28/31) AAS
Kiran Sridhara Kedlaya先生のホームページ下記

IUTからみで、前半2回のworkshopは
リストアップされている
しかし、後半2回のworkshopは、リストにないね(^^;
3)
Invitation to inter-universal Teichmuller Theory (IUT)
RIMS workshop, September 1 - 4 2020
省15
131: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)22:01 ID:iKDSmfWl(29/31) AAS
>>56
>Jakob Stix (Frankfurt Univ., Germany),

Stix先生も、4回のworkshop中、
前半2回の内なら、IUTは冠されていないということかな(^^;
132: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)22:09 ID:iKDSmfWl(30/31) AAS
3.12式の前までは、認めようということかもな(^^;
133: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/23(土)22:10 ID:iKDSmfWl(31/31) AAS
果たして果たして(^^
134: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)00:19 ID:GGJQySam(1/15) AAS
メモ

外部リンク[pdf]:www.math.kyoto-u.ac.jp
アラケロフ幾何入門 ? ボゴモロフ予想に向けて ? 川口 周,森脇 淳,山木 壱彦 Date: 1/March/1999, 5:00PM, (Version 1.0).
目次
序3
1. 算術的 Chow群4
1.1. イントロダクション4
省33
135
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)08:10 ID:GGJQySam(2/15) AAS
>>128 補足

伝統的に(2CH時代から)、5CHでは
URLリンクのみの1行張付けが多い

だが、それではURLの先へ飛ぶ価値があるかどうかの判断が付かないし
なので、題目と著者と発行日と、それに若干の内容(次の検索用キーワードと次の議論のための)を、コピペしている

で、コピペ内容は、よく文字化けする。あと、数式が崩れるが、ご容赦
(wikipediaの数式は独特で手直ししないと、単純コピペでは読めないが、最近手直しが面倒なのでそのままが多い(^^; )
省6
136: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)08:13 ID:GGJQySam(3/15) AAS
>>135 訂正

URLの先の抜粋コピペには(それ以外に、リンクが切れたとき(時間が経つとしばしば起きる)のためのコピペでもある)
 ↓
URLの先の抜粋のコピペは、それ(上記)以外に、リンクが切れたとき(時間が経つとしばしば起きる)のためのコピペでもあるんだ
137: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)09:40 ID:GGJQySam(4/15) AAS
>>135

ついでに書いておくが

・このスレは、通常の数学板のスレとは違う
・私スレ主の個人ブログに近いと思って貰えば良い
(自分が、ブログを立ち上げても多分人っ子一人こないだろう。それを思えば、このスレに私以外が書かなくてもなんの不満も不都合もない)
・テンプレ>>1にもあるが、話題はガロアに限定されない。まあ、”ガロア”は釣りだな
 千葉浦安が、”東京”ディズニーランドみたいなもの
省2
138
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)10:42 ID:GGJQySam(5/15) AAS
>>31 IUT現状補足

・IUTの数学としては、ScholzeとStixの指摘は、Corollary 3.12の証明がおかしいと問題視されている
・あと、テレンスタオが、「IUTはABCしか適用がない。他に応用できるものがない(だからおかしい)」と言ったとか

外部リンク:ja.yourpedia.org
宇宙際タイヒミュラー理論
(抜粋)
多輻的復元アルゴリズム
省16
139
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)10:53 ID:GGJQySam(6/15) AAS
>>138
>・IUTの数学としては、ScholzeとStixの指摘は、Corollary 3.12の証明がおかしいと問題視されている

1.ScholzeとStixの指摘は、「ラベルの付け方が、単純に圏論で考えると、矛盾が起きるぜ」と
2.対して、望月側は「単純に考えすぎだよ。IUTは単純に考えちゃいけない」と

議論は噛み合わなかったらしい

>・あと、テレンスタオが、「IUTはABCしか適用がない。他に応用できるものがない(だからおかしい)」と言ったとか

これは、来年のシンポジュームでなにか出るのでしょうw(^^;
省8
140: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)10:54 ID:GGJQySam(7/15) AAS
>>139 タイポ訂正

(確か、論文公開後に矛盾を指摘されて、ダウグレードした)
 ↓
(確か、論文公開後に矛盾を指摘されて、ダウングレードした)
141
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)12:53 ID:GGJQySam(8/15) AAS
>>139
>(IUTで1/2が出る箇所があって、山下先生が、「リーマン予想の1/2と関連している」と指摘して、望月先生が喜んだとか(^^;
> 来年のシンポジュームでは、Max 山下先生によるリーマン予想の解決が期待できるぞ)

”Max 山下先生によるリーマン予想の解決が期待できるぞ”は、当然ジョークですけどね
根拠は、下記だな(^^

おサルは、そんなことも知らずに、IUTスレに大きな顔をして参加しているのか?
確か、リーマン予想とIUTとの関連発言は、IUTスレの過去スレでも出たぜ(複数回)*)
省23
142: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)13:31 ID:GGJQySam(9/15) AAS
>>141
>なお、望月論文のIIだったかIIIだったかに、脚注として望月先生がこれを取入れたと思ったが

ご指摘がありました望月論文?だったかも
?のファイル内検索 ”Riemann” 18ヒット
最初のところだけ、引用しておいた

Inter-universal geometry と ABC予想 42
2chスレ:math
省23
143: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)15:19 ID:GGJQySam(10/15) AAS
あれま〜!
このスレが4位だよw(^^;

もっとも、”8位 = 現代数学の系譜 カントル 超限集合論 475  9”って
なんなのだろうね

いま、本当に無人になっているのに
5CH数学板の過疎の惨状

いま無人になっている板が8位で
省12
144: 2019/11/24(日)15:50 ID:YMClmsa4(1) AAS

145: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)16:08 ID:GGJQySam(11/15) AAS
おつ
146
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)16:22 ID:GGJQySam(12/15) AAS
Inter-universal geometry と ABC予想 42
2chスレ:math
371 名前:132人目の素数さん[sage] 投稿日:2019/11/24(日) 14:15:33.07 ID:INYq4ybQ
Twitterリンク:FumiharuKato
新しいアマゾンのレビューでScholze-Stixに言及して、ちょっとわかったようなご意見を頂戴しましたが、この方は1年半前の状況から現在までなにも変わってないとお思いのようですね。

これか(^^;
https://アマゾン(URLがNGなので、キーワードでググれ(^^ )
省11
147
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)18:06 ID:GGJQySam(13/15) AAS
>>146 関連

ツィッターなので順序が逆であることにご注意
(分かり難いので、元のURLを見て下さい(^^ )

Twitterリンク:FumiharuKato
Fumiharu Kato 加藤文元 2019 11月9日
(抜粋)
現在ではIUT理論やその周辺の専門分野に関わる専門家たち(念のために述べますが、日本人に限りません)の間では、Scholze-Stixによる勘違いであったのだろうという認識であり、現在に至っても「破綻」していたりギャップがあったりしている箇所は指摘されていません。
省9
148: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)18:28 ID:GGJQySam(14/15) AAS
>>147 補足

1.まあ要するに、加藤文元先生の言い分
 Scholze-Stixには、反論してあるが、再反論はなく、Scholze-Stixは逃げた
 (だが、英語圏ではそうは見られていないように思うが。というのは、諸手を挙げて、望月マンセーの人増えていない(従来から賛成の人以外には、賛成の人少ない) (^^; )
2.で、「Scholze-Stixによる勘違いであったのだろう」というなら、
  それを3.12の追記として、
  (SSの意図は)推察でいいから「こういう初歩的な勘違いと思われる」とはっきり書いてほしいね
省6
149
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/24(日)21:58 ID:GGJQySam(15/15) AAS
>>147
>現在ではIUT理論やその周辺の専門分野に関わる専門家たち(念のために述べますが、日本人に限りません)の間では、Scholze-Stixによる勘違いであったのだろうという認識であり、現在に至っても「破綻」していたりギャップがあったりしている箇所は指摘されていません。

日本国内の空気を読むと
シラケテいる感じがあるよね

日本国内に対しても、RIMSの一部以外では、”Scholze-Stixによる勘違いであったのだろうという認識であり”は、これが共有されているとは言えないのでは?
特に、東大系からは、「否定も肯定もしない」という空気で、だれもなにも発言しない

日本数学会のプログラムにもIUTの欠けらもない
省13
150: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)07:31 ID:1A25DpO+(1/9) AAS
メモ:
アマゾンは、GAFAの前の”A”。最初は書籍のネット販売だったのにね(^^;
外部リンク:www.nikkei.com
アマゾンジャパン、AI人材育成へ無償教育開始 日経 2019/11/22 17:56

アマゾンジャパン(東京・目黒)は中高生向けに、人工知能(AI)の活用に必要なプログラミング教育を無償で始めた。首都圏を中心に試験的に始めた。IT(情報技術)教育を提供するライフイズテック(東京・港)、日本YMCA同盟と連携して2020年以降、全国に広げることを検討している。

22日に都内で「アマゾンアカデミー」を開いた。アマゾンジャパンのジャスパー・チャン社長は「エンジニアだけでなく、あらゆる場面でAIを活用できる人材育成が大事な時代」と話した。年内は試験プログラムで、計180人の中高生にプログラミング教室を提供する。

無償教育とは別に、チャン社長は18年12月期に日本で3120億円を投資したことを明らかにした。ネット通販の物流施設やクラウド事業のアマゾン・ウェブ・サービス(AWS)などの設備投資だけでなく、研究開発や人材関連の投資も含んでいる。
省2
151: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)15:22 ID:NuOctDvT(1/3) AAS
>>149
>望月新一先生が、ものすごいホームランを飛ばした
>というよりは
>「ファールじゃないか?」と、ボールの行方を見ているという空気じゃないかと読んだぜw(^^;

補足
・ホームランが、確定したわけではない
・では、ファール確定かというと、IUT軍団というかIUTを取り巻く人が大杉で(^^;
省11
152
(2): 2019/11/25(月)18:06 ID:5k7RI9yy(1/2) AAS
おっちゃんです。
>>96
微分形式のことは書かれていない。まあ、一応解析の本なんで。

>>99
バナッハ空間における微分は、その存在性を示さなくても定義可能。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n で、偏微分や全微分が実質的に定義されている。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n での
省2
153
(1): 2019/11/25(月)18:14 ID:5k7RI9yy(2/2) AAS
>>99
>>152>99宛ての1行目について訂正:
バナッハ空間における微分 → 実数体R上のバナッハ空間における微分

それじゃ、おっちゃんもう寝る。
154
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)18:20 ID:NuOctDvT(2/3) AAS
IUT情報:下記
ふーん、イギリスへ行っているあの先生とF先生のところとの共著かも(^^
また、識別とラベルの問題とか、イチャモンつくかも知れないが、それでも良い
どんどん、進めてほしい。外野で見ている方の希望としては (^^;

Inter-universal geometry と ABC予想 42
2chスレ:math
423 名前:132人目の素数さん[sage] 投稿日:2019/11/25(月) 14:16:33.03 ID:ub/eJojY
省6
155: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)18:21 ID:NuOctDvT(3/3) AAS
>>152-153
おっちゃん、どうも、スレ主です。
レスありがとう〜!(^^
156
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)20:52 ID:1A25DpO+(2/9) AAS
>>154 これか(^^

Inter-universal geometry と ABC予想 42
2chスレ:math
431 名前:132人目の素数さん[] 投稿日:2019/11/25(月) 16:10:00.16 ID:L5hBwAc/ [3/3]
午後8:33 · 2018年10月22日
今回の講演では、楕円曲線の6等分点を
用いることによって完全に明示的な
省23
157
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)20:53 ID:1A25DpO+(3/9) AAS
>>156

つづき

外部リンク[html]:www.kurims.kyoto-u.ac.jp
望月新一の過去と現在の研究
南出新氏による、IUTeichにおける明示的な不等式に関する講演のスライドを掲載
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
Explicit estimates in inter-universal Teichm¨uller theory
省8
158
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)20:57 ID:1A25DpO+(4/9) AAS
>>156
因みに、Ivan Fesenko 氏
(東工大はIUT派か)
外部リンク[html]:www.math.titech.ac.jp
東工大 数論・幾何学セミナー
10月24日(水) 16:00〜17:00
東工大本館2階 234セミナー室
省15
159: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)21:02 ID:1A25DpO+(5/9) AAS
>>157 補足

この望月新一の過去と現在の研究
「南出新氏による、IUTeichにおける明示的な不等式に関する講演のスライド」
の由来がよく分からなかったのだが
なるほど、東工大 数論・幾何学セミナー 11月2日(金) だったか(^^
160
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)21:17 ID:1A25DpO+(6/9) AAS
>>157
>外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
>Explicit estimates in inter-universal Teichm¨uller theory
>(in progress)

当時(1年前)IUTスレで、南出新氏、定量評価出来たら良いなという夢を語っているだけ
みたいな評価だったが
いよいよ論文発表ですかね
省11
161: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)21:19 ID:1A25DpO+(7/9) AAS
>>160

こんなの早く arxiv投稿して
来年のシンポジュームには
もっと進んだ話題を発表してほしいね(^^;
162
(2): 2019/11/25(月)21:24 ID:LAzU75eF(1/2) AAS
ここ文系しか居ないね
163
(1): やっぱり2が好き 2019/11/25(月)21:25 ID:LAzU75eF(2/2) AAS
どこよ〜

   どこ〜

     ペレリマンはどこなのよ〜?
164: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)22:12 ID:1A25DpO+(8/9) AAS
>>156
>Wojciech Porowski氏

2011年の国際数学オリンピックで、
Bronze medal (Poland)か
Polandからイギリス留学なんだ

外部リンク[aspx]:www.imo-official.org
International Mathematical Olympiad
省3
165: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/25(月)22:15 ID:1A25DpO+(9/9) AAS
>>162-163
このスレには、アホバカしかいない
テンプレ>>12にあるとおり

もっとも、5ch数学板なんて
そんなもんだぜ

お前も
166
(2): 2019/11/25(月)22:32 ID:/WCVXAbE(1) AAS
{}∈{{}}, {{}}∈{{{}}} だから {}∈{{{}}}
とか言っちゃうアホバカは数学板でもおまえくらいだよw
167: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)00:16 ID:oYs7jyeH(1/12) AAS
>>160
Ivan Fesenko 氏、BSDを解決して、クレイ数学研究所 ミレニアム懸賞問題 100万ドルの懸賞金 ゲットできるかもなw(^^;
168: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)00:17 ID:oYs7jyeH(2/12) AAS
>>166
自分の能力の証明がないw(^^;
169
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)00:26 ID:oYs7jyeH(3/12) AAS
>>166
シングルトンの可算多重カッコ( {{{・・{{{ }}}・・・}}} ←{ }が多重になったもの)
が理解できない落ちこぼれさんたち多数居たなww(^^;
良い勝負だろ?(^^;

現代数学の系譜 カントル 超限集合論
2chスレ:math
170
(1): 2019/11/26(火)05:13 ID:xwd+SCAL(1/3) AAS
おっちゃんです。
>>162
何度も繰り返していうが、私は数学科卒ではないだけで、理系。
文系の人には、関数解析をする人はいるかも知れないが、
(非線形)楕円型 PDE や変分法とかの非線形解析に近いことをする人は多分殆どいないだろう。
171: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)07:09 ID:oYs7jyeH(4/12) AAS
>>169 タイポ訂正

シングルトンの可算多重カッコ( {{{・・{{{ }}}・・・}}} ←{ }が多重になったもの)
 ↓
シングルトンの可算多重カッコ( {{{・・・{{{ }}}・・・}}} ←{ }が多重になったもの)
172
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)07:24 ID:oYs7jyeH(5/12) AAS
>>170

おっちゃん、どうも、スレ主です。
レスありがとう

今時の経済系は、
偏微分方程式、確率微分方程式、不動点定理くらいはやるらしいぜ(^^;

(参考)
外部リンク:ja.wikipedia.org
省11
173
(1): 2019/11/26(火)08:15 ID:xwd+SCAL(2/3) AAS
>>172
>今時の経済系は、
>偏微分方程式、確率微分方程式、不動点定理くらいはやるらしいぜ(^^;
今時の経済系の人がこれらをするとする。
確率微分方程式は熱伝導方程式に基づく放物型の方程式だから、今時の経済系の人は或る程度物理を知っていることになる。
それ故、今時の経済系の人が或る程度の物理を学習していることになる。
だが、今時の多くの経済系の人がそのようなことをしているとは到底思えない。
省1
174: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)08:26 ID:oYs7jyeH(6/12) AAS
Inter-universal geometry と ABC予想 42
2chスレ:math
438 名前:132人目の素数さん[sage] 投稿日:2019/11/25(月) 17:51:09.67 ID:LBlGQQG+ [5/5]
>>437
ちがうわ。もともとメールでやりとりしてて、SS側の承諾がないと公開出来なかったんだよ。その点はむしろSS側を批判すべき。望月は公開の議論を希望してた。
(引用終り)

ここ
省15
175
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)08:28 ID:oYs7jyeH(7/12) AAS
>>173
>だが、今時の多くの経済系の人がそのようなことをしているとは到底思えない。

おっちゃん、どうも、スレ主です。
多くの経済系の人ではないよね、多分
でも、やっている人はいるだろうし
経済学部の講義にも入っていると思うよ
(どこまで数学的内容に深入りするのか知らないが(^^; )
176
(1): 2019/11/26(火)08:59 ID:xwd+SCAL(3/3) AAS
>>175
>でも、やっている人はいるだろうし
>経済学部の講義にも入っていると思うよ
>(どこまで数学的内容に深入りするのか知らないが(^^; )
物理の講義が経済学部の専門の講義に入っている訳ない。
よくて、物理の講義は、経済学部の教養の段階で終わりになるだろう。
そもそも、リーマン・ショックの株価暴落が起きて、経済の理論によるその予想が 100'% 的中する訳ではない。
省1
177: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)21:16 ID:oYs7jyeH(8/12) AAS
>>176
おっちゃん、どうも、スレ主です。
レスありがとう
なんか、数学と物理が混線しているように思うが
178
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)23:06 ID:oYs7jyeH(9/12) AAS
>>124
>楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論

"アラケロフ理論(英語版)(Arakelov theory)"下記ですな
下記では、Faltings、Serge Lang、Mordell conjecture、Deligne、arithmetic Hodge index などなど、重要キーワード満載ですな

(参考)
外部リンク:en.wikipedia.org
Arakelov theory
省11
179
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)23:07 ID:oYs7jyeH(10/12) AAS
>>178

つづき

Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.

Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov.

Arakelov's theory was generalized by Henri Gillet and Christophe Soule to higher dimensions. That is, Gillet and Soule defined an intersection pairing on an arithmetic variety.
One of the main results of Gillet and Soule is the arithmetic Riemann?Roch theorem of Gillet & Soule (1992), an extension of the Grothendieck?Riemann?Roch theorem to arithmetic varieties.
For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups.
省4
180: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)23:09 ID:oYs7jyeH(11/12) AAS
>>179
>Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.

Paul Vojta さん(^^;
181
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/26(火)23:13 ID:oYs7jyeH(12/12) AAS
>>124
>楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。

(参考)
外部リンク:en.wikipedia.org
p-adic Hodge theory
(抜粋)
The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge?Tate representation.
省2
182
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/27(水)07:49 ID:qnEhNItW(1/3) AAS
>>181

つづき

Contents
1 General classification of p-adic representations
2 Period rings and comparison isomorphisms in arithmetic geometry

General classification of p-adic representations
Let K be a local field with residue field k of characteristic p. In this article, a p-adic representation of K (or of GK, the absolute Galois group of K) will be a continuous representation ρ : GK→ GL(V), where V is a finite-dimensional vector space over Qp.
省7
183: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/27(水)07:50 ID:qnEhNItW(2/3) AAS
>>182

つづき

Period rings and comparison isomorphisms in arithmetic geometry
The general strategy of p-adic Hodge theory, introduced by Fontaine, is to construct certain so-called period rings[3] such as BdR, Bst, Bcris, and BHT which have both an action by GK and some linear algebraic structure and to consider so-called Dieudonne modules

D_{B}(V)=(B\otimes _{\mathbf {Q} _{p}}V)^{G_{K}}}
(where B is a period ring, and V is a p-adic representation) which no longer have a GK-action, but are endowed with linear algebraic structures inherited from the ring B.
In particular, they are vector spaces over the fixed field E:=B^{G_{K}}}E:=B^{{G_{K}}}.[4] This construction fits into the formalism of B-admissible representations introduced by Fontaine.
省8
184: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/27(水)07:57 ID:qnEhNItW(3/3) AAS
>>181 補足

p-adic Hodge theory
キーワードを拾うと

・The collection of all p-adic representations of K form an abelian category
・and also provides faithful functors to categories of linear algebraic objects that are easier to study.
・where each collection is a full subcategory properly contained in the next.

category、faithful functors、full subcategory properly
省1
185
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)07:59 ID:QdpmOFrx(1/7) AAS
Inter-universal geometry と ABC予想 42
2chスレ:math
449 名前:132人目の素数さん[sage] 投稿日:2019/11/26(火) 06:18:49.75 ID:LyHP70fx [1/3]
(抜粋)
ただ、コア的記述による入れ子構造、
(引用終り)

”入れ子構造”は、下記の”お話”だと思うが
省33
186
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)08:00 ID:QdpmOFrx(2/7) AAS
>>185
つづき

外部リンク:dic.nicovideo.jp
ニコニコ大百科
再帰単語
(抜粋)
再帰とは、 ある対象xの定義の中にxが登場するような物を言う。
省11
187
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)08:01 ID:QdpmOFrx(3/7) AAS
>>186
つづき

なお、関連
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
過去と現在の研究の報告 (2008-03-25 現在) (フォント埋め込み版)

(引用終り)
以上
188
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:41 ID:rRA3+Jnq(1/8) AAS
>>187

内容引用&補足:これを見ると、IUTの意図がなんとなく程度分かるね
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
過去と現在の研究の報告 (2008-03-25 現在) 

初期の歩み
学位を取得した 1992 年夏から 2000 年夏までの私の研究の主なテーマは次の三つ
に分類することができます:
省27
189
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:41 ID:rRA3+Jnq(2/8) AAS
>>188
つづき

新たな枠組への道
Hodge-Arakelov 理論では、数論的な Kodaira-Spencer 射が構成されるなど、
ABC 予想との関連性を仄めかすような魅力的な側面があるが、そのまま「ABC 予
想の証明」に応用するには、根本的な障害があり不十分である。このような障害を克
服するためには、
省23
190
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:42 ID:rRA3+Jnq(3/8) AAS
>>189
つづき

この 6 年間(= 2000 年夏〜2006 年夏)の、
「圏の幾何」や絶対遠アーベル幾何
を主テーマとした研究の代表的な例として、次のようなものが挙げられる:
・The geometry of anabelioids (2001 年)
スリム(=任意の開部分群の中心が自明)な副有限群を幾何的な対象として扱い、
省24
191
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:42 ID:rRA3+Jnq(4/8) AAS
>>190
つづき

・Absolute anabelian cuspidalizations of proper hyperbolic curves (2005年)
固有な双曲曲線の数論的基本群から、その開部分スキームの数論的基本群を復元
する理論を展開する。この理論を、有限体や p 進体上の絶対遠アーベル幾何に応用
することによって、様々な未解決予想を解く。
・The geometry of Frobenioids I, II (2005 年)
省17
192
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:43 ID:rRA3+Jnq(5/8) AAS
>>191
つづき

2006 年〜2008 年春の「IUTeich の準備」関連の論文は次の四篇である:
・The ´etale theta function and its Frobenioid-theoretic manifestations
(2006 年)
p 進局所体上の退化する楕円曲線(= Tate curve)のある被覆の上に存在するテー
タ関数に付随する Kummer 類をエタール・テータ関数と呼ぶ。このエタール・テー
省21
193
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:44 ID:rRA3+Jnq(6/8) AAS
>>192
つづき

・Topics in absolute anabelian geometry II: decomposition groups
(2008 年)
IUTeich のための準備的な考察とともに、IUTeich とは論理的に直接関係のない
配置空間の絶対遠アーベル幾何や、点の分解群から基礎体の加法構造を絶対 p 進遠
アーベル幾何的な設定で復元する理論を展開する。ただ、後者の p 進的な理論では、
省18
194
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:44 ID:rRA3+Jnq(7/8) AAS
>>193

つづき

この「単遠アーベル的アルゴリズム」は、pTeich における MF∇-object
の Frobenius 不変量に対応するものであり、即ち p 進の理論における
Witt 環の Teichm¨uller 代表元や pTeich の標準曲線
の「IU 的類似物」と見ることができる。別の言い方をすれば、この「単遠アーベル的
アルゴリズム」は、一種の標準的持ち上げ・分裂を定義しているものである。また、(単
省20
195: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)14:44 ID:rRA3+Jnq(8/8) AAS
>>194

つづき

・Inter-universal Teichm¨uller theory I: Hodge-Arakelov-theoretic aspects
(2009 年に完成(?)予定)
p 進 Teichm¨uller 理論における曲線や Frobenius の、「mod pn」までの標準持ち上
げに対応する IU 版を構成する。
・Inter-universal Teichm¨uller theory II: limits and bounds (2010 年に完
省6
196
(1): 2019/11/28(木)22:40 ID:lvt0VL8R(1) AAS
4050
しろ@hu_corocoro 11月27日
苦節6ヶ月、初満点&一等賞です!
Twitterリンク:hu_corocoro
Twitterリンク:5chan_nel (5ch newer account)
197: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)23:10 ID:QdpmOFrx(4/7) AAS
>>196
おめでとうございます
凄いですね(^^
198
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)23:48 ID:QdpmOFrx(5/7) AAS
メモ貼る
動画リンク[YouTube]
Peter Scholze - The geometric Satake equivalence in mixed characteristic
7,685 回視聴?2017/04/13

Institut des Hautes Etudes Scientifiques (IHES)
チャンネル登録者数 2.91万人
Seminaire Paris Pekin Tokyo / MArdi 11 avril 2017
省5
199: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)23:52 ID:QdpmOFrx(6/7) AAS
>>198
>Satake equivalence

Satakeは、下記だろうね
外部リンク:ja.wikipedia.org
佐武一郎
(抜粋)
佐武 一郎(さたけ いちろう、1927年 - 2014年10月10日)は、日本の数学者。山口県出身。
省12
200
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/28(木)23:58 ID:QdpmOFrx(7/7) AAS
>>198
>Satake equivalence

下記かな〜?(^^;

”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”

外部リンク:en.wikipedia.org
Satake isomorphism
省11
201
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)00:19 ID:KnsCfpdu(1/4) AAS
>>200
>which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).

淡中先生(^^
外部リンク:en.wikipedia.org
Tannakian formalism

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K.
The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K.
省9
202
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)00:20 ID:KnsCfpdu(2/4) AAS
>>201
つづき

Applications

The Geometric Satake equivalence establishes an equivalence between representations of the Langlands dual group {}^{L}G} of a reductive group G and certain equivariant perverse sheaves on the affine Grassmannian associated to G.
This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with {}^{L}G}.

Extensions
Wedhorn (2004) has established partial Tannaka duality results in the situation where the category is R-linear, where R is no longer a field (as in classical Tannakian duality),
省2
203: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)00:29 ID:KnsCfpdu(3/4) AAS
>>202
>Iwanari (2014) has initiated the study of Tannaka duality in the context of infinity-categories.

岩成 勇 先生、東北大だけど、
”2009年度: 京大, 数理解析研究所, 研究員”とあるから、京大出身かも

References
外部リンク[3321]:arxiv.org
Iwanari, Isamu (2014), Tannaka duality and stable infinity-categories, arXiv:1409.3321, doi:10.1112/topo.12057
省12
204: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)00:33 ID:KnsCfpdu(4/4) AAS
>>201

外部リンク:ja.wikipedia.org
淡中忠郎
(抜粋)
淡中 忠郎 (たんなか ただお、1908年12月27日 - 1986年10月25日 )は日本の数学者。専門は代数学。

愛媛県生まれ。1945年東北帝国大学教授、後に東北学院大学教授を務めた。ポントリャーギン双対性をコンパクト群へ拡張した淡中-クラインの双対定理で著名。

この定理はグロタンディークによる淡中圏の概念へと発展した。
省12
205
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)10:16 ID:CoYajOLi(1/11) AAS
メモ

外部リンク[html]:www.gizmodo.jp
GIZMOD
韓国の囲碁世界チャンピオンが「AIは倒せない存在だ」と引退
2019.11.28 16:00
author Jennings Brown - Gizmodo US[原文]( 岡本玄介 )
(抜粋)
省6
206
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)10:21 ID:CoYajOLi(2/11) AAS
>>205
数学では部分的に、同じように、ヒトを機械が上回ることが起きて来ていた
・πの計算
・表計算(含む関数計算、例エクセル)
・有限群の計算
・数式処理ソフト

など
省3
207
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)11:28 ID:CoYajOLi(3/11) AAS
>>160 関連

IUTうまく行ってほしいですね(^^;

Twitterリンク:math_jin
math_jinさんがリツイート
Fumiharu Kato 加藤文元
@FumiharuKato
11月25日
省9
208
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)13:46 ID:CoYajOLi(4/11) AAS
メモ

外部リンク:www.nikkei.com
国産データベース開発、技術革新で巡ってきた勝機
2019/11/28 2:00日本経済新聞 電子版

新エネルギー・産業技術総合開発機構(NEDO)が5年と25億円を投じて、国産の新しいリレーショナルデータベース(RDB)を開発している。日経 xTECHの取材でその詳細が明らかになった。
RDBの世界で近年、DBエンジンの作り直しが必須となる目覚ましい技術進化が起こっていることから、新規参入にも勝算があると判断した。

NEDOのRDB開発プロジェクトは「実社会の事象をリアルタイム処理可能な次世代データ処理基盤技術の研究開発」で、2018年度からの5年間に25億円の国費を投じる。開発はNEC、ノーチラス・テクノロジーズ(東京・品川)、東京工業大学、大阪大学、名古屋大学、慶応義塾大学などに委託する。
省7
209
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)13:47 ID:CoYajOLi(5/11) AAS
>>208

つづき

OLAP高速化のために探索的データ分析を高速に実行するフレームワークも開発する。OLAPのクエリー(問い合わせ)を実行する前に機械学習ベースのアルゴリズムによってその内容を分析し、クエリーにとって最適なスキーマ(構造)を設定する。クエリー実行計画に加えてデータ構造も最適化することで、探索的データ分析を高速化する。

■PostgreSQL互換、OSSとして公開

新しいRDBはOLTPエンジンとOLAPエンジンの両方を搭載する。両エンジンに対応するクエリーのコンパイラーも開発する。完全に新規開発のRDBではあるが、SQLクエリーなどアプリケーション開発者にとってのインターフェースはオープンソースソフトウエア(OSS)のRDBであるPostgreSQL(ポストグレスキューエル)互換とすることで、使い勝手を良くする。
新RDB自体もOSSとして公開する計画だ。
省5
210
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/29(金)13:47 ID:CoYajOLi(6/11) AAS
>>209

つづき

■楽観的制御と高い分離レベルを両立

SILOの特徴は「SERIALIZABLE」の分離レベルを保証しながら、処理性能も高い点だ。現在の主要RDB製品もSERIALIZABLEを使用できるが、処理性能が大きく落ちてしまうため、デフォルト設定においてトランザクション分離レベルは2段階低い「READ COMMITTED(リード・コミッテッド=コミットされた読み取り)」になっている。SILOのような高い分離レベルと高い処理性能の両立は画期的だった。

SILOはロックを基本的に用いない「楽観的並行実行制御(OCC)」と、複数のトランザクションをまとめてログに記録する「グループコミット」を採用している。基本はロックフリーでトランザクションを並列処理して性能を高めつつ、わずかな時間だけロックを使うことでデータの一貫性を確保するテクニックを用いている。
省5
1-
あと 792 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s