[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
92
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:35 ID:JrhjRl4x(41/46) AAS
>>91 補足

”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.
Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?”

ツェルメロ自然数構成
批判はされているけれど(^^

・by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these
省4
94
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:44 ID:JrhjRl4x(42/46) AAS
>>92 補足

”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”
これで、無限集合ができるなら、{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ

それがなければ、有限集合にしかならんわな

だから、くどいけど、Stanford大 URL見ると Michael Hallett さんて方らしいが、ツェルメロ構成で実数まで到達できると言っているんだから
{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ(^^
95
(3): 2019/10/05(土)21:51 ID:kZwmbLNI(39/44) AAS
>>91-92
英語読めませんか?

Infinity
This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….)

つまり>>29で述べたω’(={{},{{}},{{{}}},…})
∃ω’.{}∈ω’∧(∀x.x∈ω’⇒{x}∈ω’)
だといってます
省1
100: 2019/10/05(土)22:01 ID:o3KPqddg(7/8) AAS
ヨコです。
>>92の英文の読みは>>94さんが正解ですね。
Zermeloの構成で可算無限集合ができると言ってる無限集合は{0,1,2,3,‥}であってこのスレのΩが構成できるという意味ではありません。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s