[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
266
(4): 2019/10/11(金)16:13 ID:YULRpgNc(2/2) AAS
そもそも
X={…{∅}…}
なんて集合を考えたら
F(X)={Y|∃x1∈ x2∈ x3∈‥xn Y=x1, X=xn}
とおくときF(X)には単元集合(singleton)しか許してもらえないんでは?
表記的に?
どこまで行っても単元集合しか出てこないとしか解釈できない希ガス。
272
(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)07:50 ID:0oc9Ztsl(4/28) AAS
>>266
ども、レスありがとう

>どこまで行っても単元集合しか出てこないとしか解釈できない希ガス。

同意です
補足説明します

普通の自然数N+ω:1,2,3,・・n,・・,ω
に対して(ωは極限順序数で>>164ご参照)
省25
276
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)09:18 ID:0oc9Ztsl(7/28) AAS
>>275
どうも。レスありがとう

>{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
>には最大値が存在してしまうのでは?

別に言い訳するつもりはないけど
 >>272で同意したのは、
ツェルメロ構成では、「どこまで行っても単元集合しか出てこない」ということなのです
省31
287
(3): 2019/10/12(土)10:30 ID:zrApsl4A(1) AAS
>>275みたいに全部数式だと無理なのかな?
長さに上限がないとすると各自然数に対して
Ω=x11
Ω=x21∋x22
Ω=x32∋x32∋x33
Ω=x41∋x42∋x43∋x44
‥‥
省6
762: 2019/12/15(日)01:01 ID:1xZAPqJd(1/2) AAS
そもそも
X={…{∅}…}
なんて集合を考えたら
F(X)={Y|∃x1∈ x2∈ x3∈‥xn Y=x1, X=xn}
とおくときF(X)には単元集合(singleton)しか許してもらえないんでは?
表記的に?
どこまで行っても単元集合しか出てこないとしか解釈できない希ガス。
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s