[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
175(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:07 ID:d8OQiN+r(20/27) AAS
>>102 追加
>(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
この”for any object a, of the singleton set {a}”
は、ZFCでは、対の公理だね
a → {a}が言える
(参考)
外部リンク:ja.wikipedia.org
省19
176: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:13 ID:d8OQiN+r(21/27) AAS
>>175 補足
ツェルメロの the singleton set {a} の公理
あるいは
ZFCの対の公理より
任意のaから、{}を一つ加えた集合{a}の存在が言える
これは、当たり前のことだが、公理だから、普通に考えて、無制限(^^
正則性公理の無限降下列に反するだ〜?
省1
180(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:18 ID:d8OQiN+r(22/27) AAS
>>175
商集合は、分出公理を使うのか
外部リンク:unaguna.jp
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) > 同値関係と同値類
(抜粋)
同値類
省22
288(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)11:56 ID:0oc9Ztsl(13/28) AAS
>>287
申し訳ないが、意味が取れない
1)下記、Zermelo (1908b) ”(b) the existence, for any object a, of the singleton set {a} which has a as its sole member”
2)これは、>>175の通り、ZFCでは、対の公理で「a → {a}」が言える
3)で、Zermelo (1908b)では正則性公理は、無かった(∵1925年にジョン・フォン・ノイマンによって導入された)
4)しかし、ZFCの対の公理による「a → {a}」の the singleton set {a}生成 に、正則性公理からの規制(有限回に限られる?)があると、そういう話はないでしょ?
じゃ、ZFCの対の公理による「a → {a}」の the singleton set {a}生成が、これの超限回繰返しが可能なわけですよね
省17
291(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)13:59 ID:0oc9Ztsl(15/28) AAS
>>288
> 2)これは、>>175の通り、ZFCでは、対の公理で「a → {a}」が言える
補足
繰返すが、どんな集合であれ、対の公理で「a → {a}」が言えるのです
これは、公理だから、無制限に成立します(有限に限らない)
aが、たとえ無限集合でも、まとめて、the singleton set {a} にできる
回数は、無制限です
省19
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s