[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
713: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/13(金) 07:56:11.71 ID:ljJF0g2A これが分り易いかも Foundation and epsilon-induction おサルでも読めるだろう 正則性公理が理解出来ていないんだよね(^^; http://web.mat.bham.ac.uk/R.W.Kaye/logic/foundation.html Foundation and epsilon-induction (抜粋) 1. Introduction Either by examining the sets created in the first few levels of the cumulative hierarchy or from other means, via considering the idea of constructions of sets perhaps, we conclude that we do not expect sets to have infinite descending sequences x0∋x1∋x2∋x3∋x4∋… at least for sets in the cumulative hierarchy of constructed sets. The axioms of Zermelo-Fraenkel set theory are intended to represent axioms true in this hierarchy, so we expect to have an axiom stating there can be no such descending sequence. Unfortunately, the statement that there is no such descending sequence is not first order, but second order. This is analogous to the fact that there are nonstandard structures satisfying all first order sentences of arithmetic true in N. However, the example of arithmetic provides at least one clue as to a powerful axiom scheme true in all structures without infinite descending chains: induction. Applied to set theory we have the axiom scheme of ∈-induction. Axiom Scheme of ∈-Induction: For all first order formulas ?(x,a??) of the language L∈, ∀a???(∀x?(∀y∈x??(y)→?(x))→∀x??(x,a??)). We are not going to adopt this as an axiom scheme for Zermelo Fraekel because it will follow from other axioms, and it will be instructive to see how that happens. We will, however, adopt the following special case of ∈-Induction. Axiom of Foundation: ∀x?(∃y?y∈x→∃y?(y∈x∧¬∃z?(z∈x∧z∈y))). Other ways of saying this include: if x is nonepty there is a set y∈x such that y∩x=?; and if x is nonepty there is an ∈-minimal y∈x i.e. one with no z∈x having z∈y. Proposition. The axiom of fountation follows from the axiom scheme of ∈-induction. Proof. 2. Applications http://rio2016.5ch.net/test/read.cgi/math/1570237031/713
714: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/13(金) 07:58:13.92 ID:ljJF0g2A >>713 追加 https://en.wikipedia.org/wiki/Epsilon-induction Epsilon-induction (抜粋) In mathematics, ∈-induction (epsilon-induction) is a variant of transfinite induction. It can be used in set theory to prove that all sets satisfy a given property P(x). This is a special case of well-founded induction. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/714
722: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/14(土) 07:47:25.56 ID:s6Tab8iq >>713 文字化けを直して、再引用しよう http://web.mat.bham.ac.uk/R.W.Kaye/logic/foundation.html Foundation and epsilon-induction (抜粋) 1. Introduction Either by examining the sets created in the first few levels of the cumulative hierarchy or from other means, via considering the idea of constructions of sets perhaps, we conclude that we do not expect sets to have infinite descending sequences x0∋x1∋x2∋x3∋x4∋… at least for sets in the cumulative hierarchy of constructed sets. The axioms of Zermelo-Fraenkel set theory are intended to represent axioms true in this hierarchy, so we expect to have an axiom stating there can be no such descending sequence. Unfortunately, the statement that there is no such descending sequence is not first order, but second order. This is analogous to the fact that there are nonstandard structures satisfying all first order sentences of arithmetic true in N. However, the example of arithmetic provides at least one clue as to a powerful axiom scheme true in all structures without infinite descending chains: induction. Applied to set theory we have the axiom scheme of ∈-induction. Axiom Scheme of ∈-Induction: For all first order formulas Φ(x,a ̄) of the language L∈, ∀a ̄(∀x(∀y∈xΦ(y)→Φ(x))→∀xΦ(x,a ̄)). We are not going to adopt this as an axiom scheme for Zermelo Fraekel because it will follow from other axioms, and it will be instructive to see how that happens. We will, however, adopt the following special case of ∈-Induction. Axiom of Foundation: ∀x(∃y y∈x→∃y(y∈x∧¬∃z(z∈x∧z∈y))). http://rio2016.5ch.net/test/read.cgi/math/1570237031/722
728: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/14(土) 08:37:06.35 ID:s6Tab8iq >>725 つづき <ノイマン構成>にしろ、<Zermelo構成>にしろ 0,1,2,3,・・・たちを集合として見たら 上昇列:0∈1∈2∈3∈4∈… が構成される これは、可算無限長の上昇列 で、<ノイマン構成>と<Zermelo構成>とは、一対一対応がつくのです 自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」(>>725) とあるように、無限集合の公理によりできる集合 M には、自然数Nに余分な(過剰)要素が存在する (だから、無限集合(=後者関数について閉じていて)で、共通部分に絞って、過剰要素を落とすのです) この過剰要素は、有限の要素ではありえない (∵有限ならば自然数Nの要素) 従って、ノイマン構成では、自然数Nを超える無限要素が構成できる ノイマン構成とZermelo構成とは、一対一対応がつくから Zermelo構成にも、自然数Nを超える無限要素が構成できる それを、{{…}}(>>720)と簡単に表現しただけのことで もともと、正確な表現って無理でしょ (何らかの妥協をしないと、簡単な表現はできない) ところが、簡単にマンガ的に表現したものを攻撃して、「一番右の”}”があるのないの・・」とか 果ては、正則性公理に反するとか、おいおい 要は、>>713の原文(英文だが)を読んでみなさいってことよ 読めなければ、もともと、この”カントル 超限集合論”スレで議論する力がないってことでしょ 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/728
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s