[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
619: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/07(土) 08:44:56.93 ID:H2e5WMAT >>618 つづき (ドイツ語原文) P263 Axiom I. Ist jedes Element einer Menge M gleichzeitig Element von N und umgekehrt, ist also gleichzeitig M =E N und N =E M, so ist immer M = N. Oder kurzer: jede Menge ist durch ihre Elemente bestimmt. P266 Um aber die Existenz "unendlicher" Mengen zu sichern, bedurfen wir noch des folgenden, seinem wesentlichen Inhalte von Herrn R. Dedekind**) herruhrenden Axiomes. Axiom VII. Der Bereich enthalt mindestens eine Menge Z, welche die Nullmenge als Element enthalt und so beschaffen ist, das jedem ihrer Elemente a ein weiteres Element der Form {a} entspricht, oder welche mit jedem ihrer Elemente a auch die entsprechende Menge {a} als Element enthalt. (Axiom des Unendlichen.) 14 VII. *) Ist Z eine beliebige Menge von der in VII geforderten Beschaffenheit, so ist fur jede ihrer Untermengen Z1 definit, ob sie die gleiche Eigenschaft besitzt. Denn ist a irgend ein Element von Z1' so ist definit, ob auch {a} ε Z1 ist, und alle so beschaffenen Elemente a von Z1 bilden die Elemente einer Untermenge Z1', fur welche definit ist, ob Z1' = Z1 ist oder nicht. Somit bilden alle Untermengen Z1 von der betrachteten Eigenschaft die Elemente einer Untermenge T =E UZ, und der ihnen entsprechende Durchschnitt (Nr. 9) Z0 = DT ist eine Menge von der gleichen Beschaffenheit. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/619
620: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/07(土) 08:45:21.77 ID:H2e5WMAT >>619 つづき Denn einmal ist 0 gemeinsames Element aller Elemente Z1 von T, und andererseits, wenn a gemeinsames Element aller dieser Z1 ist, so ist auch {a} allen gemeinsam und somit gleichfalls Element von Z0. Ist nun Z' irgend eine andere Menge von der im Axiom gefordertenN Beschaffenheit, so entspricht ihr in gen au derselben Weise wie Z0 dem Z eine kleinste Untermenge Z0' von der betrachteten Eigenschaft. Nun mus aber auch der Durchschnitt [Z0, Z0'] , welcher eine gemeinsame Untermenge von Z und Z' ist, die gleiche Beschaffenheit wie Z und Z haben und als Untermenge von Z den Bestandteil Z0, sowie als Untermenge von Z' den Bestandteil Z0' enthalten. Nach I folgt also, das [Z0, Z0'] = Z0 = Z0' sein mus, und das somit Z0 der gemeinsame Bestandteil aller moglichen wie Z beschaff (men Mengen ist, obwohl diese nicht die Elemente einer Menge zu bilden brauchen. Die Menge Z0 enthalt die Elemente 0, {0}, { {0} } usw. und moge als "Zahlenreihe" bezeichnet werden, weil ihre Elemente die Stelle der Zahlzeichen vertreten konnen. Sie bildet das einfachste Beispiel einer "abzahl bar unendlichen" Menge (N r. 36). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/620
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
3.048s*