[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
617: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/07(土) 08:42:52.69 ID:H2e5WMAT >>614 無理するな(^^ (>>612より) https://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN235181684_0065 (このサイトからPDFが落とせる) Untersuchungen uber die Grundlagen der Mengenlehre. I. Von E. ZERMELO in Gottingen. P261 (抜粋英訳) P263 Axiom I. If every element of a set M is simultaneously an element of N and vice versa, that is, if M = E N and N = E M at the same time, then M = N is always M or shorter: every set is determined by its elements. P266 But in order to secure the existence of "infinite" sets, we still need the following axiom, which derives from its essential content by Mr. R. Dedekind. Axiom VII. The domain contains at least a set Z which contains the null set as an element and is such that each of its elements a is another element of the form {a}, or which with each of its elements a is also the corresponding set {a } as an element. (Axiom of the infinite.) 14 VII. *) If Z is an arbitrary set of the properties required in VII, then for each of its subsets Z1 it is definite whether it possesses the same property. For if a is any element of Z1 ', it is definite whether {a} ∈ Z1, and all the elements a of Z1 thus constituted form the elements of a subset Z1' for which it is definite whether Z1 '= Z1 or Not. Thus, all subsets Z1 of the considered property form the elements of a subset T = E UZ, and the average corresponding to them (# 9) Z0 = DT is an amount of the same nature. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/617
618: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/07(土) 08:43:56.92 ID:H2e5WMAT >>617 つづき For once 0 is a common element of all elements Z1 of T, and on the other hand, if a is a common element of all these Z1, then also {a} is common to all and therefore also an element of Z0. If Z 'is any other quantity of the nature required in the axiom, then in the same way as Z0 it corresponds to Z for a smallest subset Z0' of the property under consideration. Now, however, the average [Z0, Z0 '], which is a common subset of Z and Z', must have the same properties as Z and Z and, as a subset of Z, the constituent Z0 and, as a subset of Z ', the constituent Z0 ' contain. After I it follows that [Z0, Z0 '] = Z0 = Z0', and that Z0 is therefore the common component of all possible quantities, such as Z, although these do not need to form the elements of a set. The set Z0 contains the elements 0, {0}, {{0}}, and so on, and may be called a "series of numbers" because their elements can represent the location of the numerals. It is the simplest example of a "countless infinite" set (Nos. 36). 注:36節(Nos. 36 P280)で、ZERMELOは無限("unendliche")について論じている。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/618
625: 132人目の素数さん [sage] 2019/12/07(土) 11:25:12.03 ID:LqOT9BiI >>617 無理などあなた以外誰もする必要ないくらいの問題です。 こんな話数学科の学部生レベルのごく基本的なお話です。 ツォルンの補題や超限帰納法なんて一回生でやる話です。 あなたはそのレベルの話ですら理解できてないんですよ。 理解するつもりすらないらしいから当然ですが。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/625
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.233s*