[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
540: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/30(土) 20:55:01.03 ID:4Ujjq2jv >>537 機械英訳してみた(^^ (Google 仏→英訳) On the notion of finite set. Through Casimir Kuratowski (Warszawa). Mr. W.Sierpinski gave in his book The axiom of Mr. Zermelo and his role in the Theory of Ensembles and Analysis 1) a new definition of the finite set. This definition is essentially distinguished by the fact that it does not depend either on the notion of natural number or on the general notion of function, which usually enters into the definitions that make use of the notion of correspondence. The definition in question is as follows: "Consider classes K sets each of which satisfies the following conditions: 1 ° any set containing a single element belongs to class K, 2 ° si.A. and B are two sets belonging to the class K, their set-sum A + B also belongs to K. Let's call finite everything that belongs to each of classes K satisfying conditions 1 ° and 2 ° ". つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/540
541: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/30(土) 20:55:23.24 ID:4Ujjq2jv >>540 つづき ?As we know, the set of all objects (if it exists) enjoys paradoxical properties: unlike a theorem known to G. Cantor, the power of this set would not be inferior to that of the class of all its subassemblies. It is the same of the class composed of all the sets containing a single element; therefore, K classes do not check, Cantor's theorem. ?Taking this fact into account, one could question the very existence of classes K. By modifying Mr. Sierpinski's definition so as to remove that drawback, I get the following definition: The set M is finite, when the class of all its subsets (not empty) is the only class satisfying the conditions: 1. its elements are subsets (not empty) of M; 2. any set containing a single element of M belongs to this class; 3. if A and B are two sets belonging to this class, their set -sorn A + B also belongs to it. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/541
544: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/30(土) 21:01:00.40 ID:4Ujjq2jv >>540 (Google 仏→日本語訳) 有限集合の概念について。 によって Casimir Kuratowski(ワルシャワ)。 W.Sierpinski氏は彼の著書「Zermeloの公理とアンサンブルと分析の理論における彼の役割」1)有限集合の新しい定義を与えました。 この定義は、自然数の概念にも機能の一般的な概念にも依存しないという事実によって本質的に区別されます。通常は、対応の概念を利用する定義に入ります。 問題の定義は次のとおりです。 「クラスKセットのそれぞれが次の条件を満たすことを検討してください。 1°単一の要素を含むセットはクラスKに属し、 2°si.A。とBはクラスKに属する2つのセットです。 それらの集合和A + BもKに属します。 それぞれに属する有限のすべてを呼び出しましょう 条件1°および2°を満たすクラスK。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/544
548: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/30(土) 21:11:38.02 ID:4Ujjq2jv >>540 >Mr. W.Sierpinski 参考 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A1%E3%83%84%E3%83%AF%E3%83%95%E3%83%BB%E3%82%B7%E3%82%A7%E3%83%AB%E3%83%94%E3%83%8B%E3%82%B9%E3%82%AD ヴァツワフ・シェルピニスキ (抜粋) ヴァツワフ・シェルピンスキ(Wac?aw Franciszek Sierpi?ski、シェルピンスキー、1882年3月14日 - 1969年10月21日)とは、ワルシャワで生没したポーランドの数学者である。彼は集合論(選択公理や連続体仮説に関する研究)や数論、関数論、位相幾何学に対する多大な貢献をしたことで知られている。 彼は、700部を越す論文と、50冊の本を出版した(そのうちの 2 つ、『一般位相数学入門』Introduction to General Topology ,1934 と 『一般位相数学』General Topology,1952は、カナダの数学者 セシリア・クリューガーによって英訳されている)。 3 つの有名なフラクタルが、彼の名にちなんでいる(シェルピンスキーの三角形、シェルピンスキーのカーペット、シェルピンスキー曲線)。 数学への貢献 シェルピンスキが集合論に関心を持ったのは、「平面上にある(複数の)点は一つの座標で定義可能である」という定理に遭遇したからであった。その証明について当時ゲッティンゲンにいた数学者タデウシュ・バナヒェヴィチに質問したところ、彼の回答は一言カントールだけであった。 これを契機に集合論の研究を本格的に始める。リヴィウ大学に奉職して6年の間に数多くの論文を発表し、数論に関する3冊の本を公刊するまでに至った。 第一次世界大戦が勃発すると、迫害を避けるために家族と共にロシアに移り、ニコライ・ルージンと共に集合論の研究を継続。 終戦と共に復職するが、間も無くワルシャワ大学に移籍。ポーランド・ソビエト戦争ではポーランド軍参謀本部で作戦立案に携わる。 更にジグムント・ヤニシェフスキらと数学雑誌の立ち上げに参画しながら集合論の研究を進め、シェルピンスキ曲線として現在知られているものを発表している。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/548
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.027s