[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
508: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/28(木) 00:22:27.05 ID:QdpmOFrx >>504 追加 https://en.wikipedia.org/wiki/Finite_set Finite set (抜粋) Necessary and sufficient conditions for finiteness In Zermelo?Fraenkel set theory without the axiom of choice (ZF), the following conditions are all equivalent:[citation needed] 2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.) Set-theoretic definitions of finiteness Various properties that single out the finite sets among all sets in the theory ZFC turn out logically inequivalent in weaker systems such as ZF or intuitionistic set theories. Two definitions feature prominently in the literature, one due to Richard Dedekind, the other to Kazimierz Kuratowski. (Kuratowski's is the definition used above.) つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/508
509: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/28(木) 00:24:40.66 ID:QdpmOFrx >>508 つづき Kuratowski finiteness is defined as follows. Given any set S, the binary operation of union endows the powerset P(S) with the structure of a semilattice. Writing K(S) for the sub-semilattice generated by the empty set and the singletons, call set S Kuratowski finite if S itself belongs to K(S).[8] Intuitively, K(S) consists of the finite subsets of S. Crucially, one does not need induction, recursion or a definition of natural numbers to define generated by since one may obtain K(S) simply by taking the intersection of all sub-semilattices containing the empty set and the singletons. Readers unfamiliar with semilattices and other notions of abstract algebra may prefer an entirely elementary formulation. Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that: X contains the empty set; For every set T in P(S), if X contains T then X also contains the union of T with any singleton. Then K(S) may be defined as the intersection of M. In ZF, Kuratowski finite implies Dedekind finite, but not vice versa. In the parlance of a popular pedagogical formulation, when the axiom of choice fails badly, one may have an infinite family of socks with no way to choose one sock from more than finitely many of the pairs. That would make the set of such socks Dedekind finite: there can be no infinite sequence of socks, because such a sequence would allow a choice of one sock for infinitely many pairs by choosing the first sock in the sequence. However, Kuratowski finiteness would fail for the same set of socks. http://rio2016.5ch.net/test/read.cgi/math/1570237031/509
510: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/28(木) 00:30:28.71 ID:QdpmOFrx >>508-509 > 2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.) >Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that: >X contains the empty set; >For every set T in P(S), if X contains T then X also contains the union of T with any singleton. >Then K(S) may be defined as the intersection of M. なるほど ”Kuratowski finiteness”の定義では、 CやRやQやNのシングルトン {C}や{R}や{Q}や{N} 達は 有限集合にはならんな! 思った通りだったな!ww(^^; http://rio2016.5ch.net/test/read.cgi/math/1570237031/510
536: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/30(土) 20:49:01.04 ID:4Ujjq2jv >>508 追加 Kuratowsk有限(1920),iは、仏文らしいね(^^; https://en.wikipedia.org/wiki/Finite_set Finite set (抜粋) References ・Kuratowski, Kazimierz (1920), "Sur la notion d'ensemble fini" (PDF), Fundamenta Mathematicae, 1: 129?131 http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1117.pdf http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-fmv1i1p17bwm Fundamenta Mathematicae 1920 | 1 | 1 | 129-131 Sur la notion d'ensemble fini Kazimierz KuratowskiJ?zyki publikacji FR Abstrakty FR Le but de cette note est d'introduire une definition d'un ensemble fini et de demontrer son equivalence avec la definition donnee par Wac?aw Sierpi?ski. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/536
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s