[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
504: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/27(水) 22:09:56.09 ID:qnEhNItW >>491 >基礎付け問題 これは、下記が、元記事だな(^^ https://en.wikipedia.org/wiki/Finite_set Finite set (抜粋) Contents 1 Definition and terminology 2 Basic properties 3 Necessary and sufficient conditions for finiteness 4 Foundational issues 5 Set-theoretic definitions of finiteness 5.1 Other concepts of finiteness Foundational issues Georg Cantor initiated his theory of sets in order to provide a mathematical treatment of infinite sets. Thus the distinction between the finite and the infinite lies at the core of set theory. Certain foundationalists, the strict finitists, reject the existence of infinite sets and thus recommend a mathematics based solely on finite sets. Mainstream mathematicians consider strict finitism too confining, but acknowledge its relative consistency: the universe of hereditarily finite sets constitutes a model of Zermelo?Fraenkel set theory with the axiom of infinity replaced by its negation. Even for those mathematicians who embrace infinite sets, in certain important contexts, the formal distinction between the finite and the infinite can remain a delicate matter. The difficulty stems from Godel's incompleteness theorems. One can interpret the theory of hereditarily finite sets within Peano arithmetic (and certainly also vice versa), so the incompleteness of the theory of Peano arithmetic implies that of the theory of hereditarily finite sets. In particular, there exists a plethora of so-called non-standard models of both theories. A seeming paradox is that there are non-standard models of the theory of hereditarily finite sets which contain infinite sets, but these infinite sets look finite from within the model. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/504
505: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/27(水) 22:11:18.53 ID:qnEhNItW >>504 つづき (This can happen when the model lacks the sets or functions necessary to witness the infinitude of these sets.) On account of the incompleteness theorems, no first-order predicate, nor even any recursive scheme of first-order predicates, can characterize the standard part of all such models. So, at least from the point of view of first-order logic, one can only hope to describe finiteness approximately. More generally, informal notions like set, and particularly finite set, may receive interpretations across a range of formal systems varying in their axiomatics and logical apparatus. The best known axiomatic set theories include Zermelo-Fraenkel set theory (ZF), Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), Von Neumann?Bernays?Godel set theory (NBG), Non-well-founded set theory, Bertrand Russell's Type theory and all the theories of their various models. One may also choose among classical first-order logic, various higher-order logics and intuitionistic logic. A formalist might see the meaning[citation needed] of set varying from system to system. Some kinds of Platonists might view particular formal systems as approximating an underlying reality. Set-theoretic definitions of finiteness In contexts where the notion of natural number sits logically prior to any notion of set, one can define a set S as finite if S admits a bijection to some set of natural numbers of the form {\displaystyle \{x\,|\,x<n\}}{\displaystyle \{x\,|\,x<n\}}. Mathematicians more typically choose to ground notions of number in set theory, for example they might model natural numbers by the order types of finite well-ordered sets. Such an approach requires a structural definition of finiteness that does not depend on natural numbers. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/505
508: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/28(木) 00:22:27.05 ID:QdpmOFrx >>504 追加 https://en.wikipedia.org/wiki/Finite_set Finite set (抜粋) Necessary and sufficient conditions for finiteness In Zermelo?Fraenkel set theory without the axiom of choice (ZF), the following conditions are all equivalent:[citation needed] 2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.) Set-theoretic definitions of finiteness Various properties that single out the finite sets among all sets in the theory ZFC turn out logically inequivalent in weaker systems such as ZF or intuitionistic set theories. Two definitions feature prominently in the literature, one due to Richard Dedekind, the other to Kazimierz Kuratowski. (Kuratowski's is the definition used above.) つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/508
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.051s