[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
4: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/05(土) 10:05:45.42 ID:JrhjRl4x さて、>>1に関連した議論の続きです 現代数学はインチキのデパート より https://rio2016.5ch.net/test/read.cgi/math/1570145810/21-25 どうも、ガロアスレのスレ主です(^^ 昨日のID:4Fu/lmU2さん(>>21)と 今日のID:kZwmbLNIさん(>>25)と が、同一人物かどうか? それが分からない それと、二つのIDの中に、私がガロアスレで論争していた人がいるかどうか? 一応、ここでは、二つのIDは同一人物で、私がガロアスレで論争していた人とは別人という前提で対応します (そのうち分かってくるかも知れませんが。ああ、(>>28)「私はサル石ではありません」と書かれましたね) なお、議論の前提として、ある程度、標準的に認められている現代数学の成果 テキストや、ウェブサイトにある、現代数学の成果は認めるものとしましょう (そうしないと、全てを公理からの構成や厳密な証明を求めるようなことをすると、余白が足りない(時間も足りない)) さて、論点を整理しましょう (>>3より) 1)正則性公理(>>16)は、無限下降列である x∋x1∋x2∋・・・ を禁止する (が、無限上昇列を禁止するものではない) なお、無限上昇列から、ノイマン構成により自然数N=ωの構成が認められる 2)ツェルメロ構成で、{{…{}…}}({}の多重無限)が考えられるが、正則性公理に反するか? で、 1)正則性公理において、>>17に示した ノイマン構成の∈の2項関係の列について 0∈1∈2∈3∈・・・∈n∈n+1・・・ ∈N=ω これは、正則性公理には反しないまでは合意(>>23-24)できましたね つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/4
5: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/05(土) 10:09:15.28 ID:JrhjRl4x >>4 補足 ああ、 (>>3より)などのリンクは、 元のスレの現代数学はインチキのデパートのものです 今後も、そういう類いがあると思いますが、 おかしなリンクと思ったときは、元のスレの「現代数学はインチキのデパート」 https://rio2016.5ch.net/test/read.cgi/math/1570145810/1- を覗いてみてください(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/5
6: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/05(土) 10:16:54.46 ID:JrhjRl4x >>4 つづき 1)の論点の 「正則性公理(>>16)は、無限下降列である x∋x1∋x2∋・・・ を禁止する が、無限上昇列を禁止するものではない」 について ノイマン構成の∈の2項関係の列 0∈1∈2∈3∈・・・∈n∈n+1・・・ ∈N=ω これは、正則性公理には反しない これは、当たり前。無限上昇列を禁止したら、現代数学の公理系としては機能しない そして、無限上昇列が出来たら、それを逆に辿る、無限下降列でしょ それとの折り合いをどうつけるか? ID:kZwmbLNIさんは 現代数学はインチキのデパート https://rio2016.5ch.net/test/read.cgi/math/1570145810/23-24 (抜粋) m∈Nで、mは自然数であるなら 0∈1∈2∈3∈・・・∈n∈n+1・・・m∈N=ω は”明らかに”有限長です。 (引用終り) と解釈することで折り合いを付けた ここは、ちょっと異論があるのですが、後で(^^ つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/6
7: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/05(土) 10:22:15.99 ID:JrhjRl4x >>6 つづき まず、タイポ訂正 そして、無限上昇列が出来たら、それを逆に辿る、無限下降列でしょ ↓ そして、無限上昇列が出来たら、それを逆に辿ると、無限下降列でしょ 分かると思うが(^^ さて、>>4より (引用開始) 議論の前提として、ある程度、標準的に認められている現代数学の成果 テキストや、ウェブサイトにある、現代数学の成果は認めるものとしましょう (そうしないと、全てを公理からの構成や厳密な証明を求めるようなことをすると、余白が足りない(時間も足りない)) (引用終り) これを合意したものとして 下記、正則性公理より、 「フォン・ノイマン宇宙、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラス」 という存在を認めることにしましょうね(^^ (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) V=WF ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。 ZF公理系の他の公理系から得られる種々の集合演算(対集合、和集合、冪集合) の結果としての集合は常にWF内に含まれるため、V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している。 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/7
9: 132人目の素数さん [sage] 2019/10/05(土) 10:44:50.18 ID:kZwmbLNI >>4 >1)正則性公理は、無限下降列である x∋x1∋x2∋・・・ を禁止する > (が、無限上昇列を禁止するものではない) ええ >なお、無限上昇列から、ノイマン構成により自然数N=ωの構成が認められる いいえ 無限上昇列だけでは、ノイマン構成によるN=ωの存在は云えません 無限公理の設定により、N=ωの存在が認められます >2)ツェルメロ構成で、{{…{}…}}({}の多重無限)が考えられるが、 >正則性公理に反するか? {}が有限重なら正則性公理に反しませんが {}が無限重の場合、構成方法によっては正則性公理に反します。 >1)正則性公理において、ノイマン構成の∈の2項関係の列について >0∈1∈2∈3∈・・・∈n∈n+1・・・ ∈N=ω >これは、正則性公理には反しないまでは合意できましたね 「・・・ ∈N」と書き続ける限り、合意に至りません かならず∈の左側に具体的要素を書いてください 0∈1∈2∈3∈・・・∈n∈n+1・・・m∈N=ω (mは自然数) であれば、合意に至ります (当然上記は有限列ですが、合意しない人はおりますまい) http://rio2016.5ch.net/test/read.cgi/math/1570237031/9
14: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/05(土) 11:03:52.61 ID:JrhjRl4x >>7 つづき >「フォン・ノイマン宇宙、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラス」 >という存在を認めることにしましょう さて、この前提で 下記より、冪集合で P({a})={Φ,{a}} つまり、 P({a})は{a}という一元集合の冪集合です ここで、{Φ,{a}}から、{{a}}という集合を作ることができるということを認めることにしましょう (注:{Φ,{a}}から、元Φを取り除くだけですけど(多分、分出公理を使う) あるいは、 P({Φ,{a}})={Φ,{Φ},{{a}},{Φ,{a}}}としても、{{a}}は作ることができる ) まあ、要するに {a}という集合に対して、一つ{}が多い{{a}}を、冪集合作る操作で、構成することができるということ ここで、フォン・ノイマン宇宙の「0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合」を認めると 空集合Φ={}に、ω回冪集合の演算を繰り返して ツェルメロ構成で、集合 {{…{}…}}({}の多重無限)(>>4)が、出来ました(^^ https://ja.wikipedia.org/wiki/%E5%86%AA%E9%9B%86%E5%90%88 冪集合 (抜粋) 冪集合(べきしゅうごう、英: power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。 定義 集合 S が与えられたとき、S のどの部分集合をも元とする集合 P(S):={A:a set|A⊆S}} を S の冪集合と呼ぶ。例えば ・ P({a})={Φ,{a}} https://tnomura9.exblog.jp/26409538/ tnomuraのブログ 冪集合公理 by tnomura9 | 2018-02-02 08:02 (抜粋) これまで調べた、外延性の公理、空集合の公理、対の公理、和集合の公理、冪集合公理から構築できる公理的集合論の世界は、空集合 {} を base case にして {{}}, {{{}}}, {{}, {{{}}}}, などのように有限集合を無限に作り出していく集合の生成体系で、そのなかでは和集合の演算が導入されている。 また、その中にはそれらの集合の冪集合も含まれる。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/14
53: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:26:32.40 ID:JrhjRl4x >>4 (再録) なお、議論の前提として、ある程度、標準的に認められている現代数学の成果 テキストや、ウェブサイトにある、現代数学の成果は認めるものとしましょう (そうしないと、全てを公理からの構成や厳密な証明を求めるようなことをすると、余白が足りない(時間も足りない)) (引用終り) これ思い出しておいてくださいね それで https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 任意の自然数よりも大きい最小の超限順序数 ω (抜粋) 特徴付け 極限順序数は他にもいろいろなやり方で定義できる: ・順序数全体の成す類(クラス)において順序位相に関する極限点 (ほかの順序数は孤立点となる) https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9 集積点/極限点 (抜粋) 集積点あるいは極限点は、位相空間 X の部分集合 S に対して定義される概念 定義 位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である (引用終り) これ、認めましょうね 超限順序数 ωが、極限点であること、任意の近傍が S の点を無限に含むという条件に同値であること だから、超限順序数 ωから、任意の有限順序数nの間には、「S の点を無限に含む」つまり、無限の順序数がある http://rio2016.5ch.net/test/read.cgi/math/1570237031/53
197: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 18:56:54.72 ID:ez50Rnmf >>196 まず、ID:cEmWDLJdさん、レスありがとう だが、>>194の ID:3bkiY8iJと、ID変わっていますよね まあ、同一人物らしいとは思うけれど、自覚されてますか? さて (引用開始) > いわゆる自然数Nよりも、余計な元、 >、超限順序数に属するべき(有限でない)元が > 生成され、含まれていることに同意しますか? Y/N > に対して、Yだと回答されたということですね いわゆる無限公理によって条件 0∈E、∀x (x∈E⇒x∪{x}∈E) を満たすEの存在は認めます。 (引用終り) じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね つまり、EはNに対して、真に大きい つまり、EはNに対して、余分な元を含む つまり、Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね ここで、>>4に書いておいたけど、「議論の前提として、ある程度、標準的に認められている現代数学の成果」、これは認めましょうよ そうしないと、どこかの素人談義と同じになりますぜ それは、時間と余白の無駄ですよ >数学である以上、数式で表現できず、その存在が証明できないものの存在なんて認めることはできません。 それ、どこかで聞いたセリフかもね ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか? 上記に書いたことをお認めになるならば、考えてみますけど でも、上記をお認めになるのが先ですよ、それが前提ですよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/197
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.469s*