[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
262: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 10:29:53.11 ID:RRsRScoq >>261 つづき 選択公理との関係 整列可能な任意の無限集合はデデキント無限である。ACは任意の集合が整列可能であることを述べた整列可能定理と同値であるから、ACから無限集合はデデキント無限集合であるということが簡単に導かれる。しかしながら、無限とデデキント無限の同値性はACよりもっと弱いものである。すなわちこの同値性を仮定してもACは導かれない。 とくに可算無限な部分集合を持たない無限集合の存在するようなZFのモデルが存在する。このモデルでは無限だがデデキント有限である集合が存在する。以上よりそのような集合はこのモデルにおいて整列不可能である。 可算選択公理CC(ACω)を仮定すればいかなる無限集合もデデキント無限であることが証明される。しかしながら、この同値性は、実際にはCCより真に弱い。(ZFの無矛盾性の仮定のもとで)CCは成立しないが2つの無限集合の定義の同値性が成り立つZFのモデルが存在する。すなわちこの同値性を仮定してもCCは導かれない。 可算選択公理を仮定した無限との同値性の証明 デデキント無限集合が無限であることはZFで容易に証明される。実際、任意の有限集合はある有限順序数と等濃であって、有限順序数がデデキント有限であることは帰納法により証明できる。 可算選択公理を用いることによって、その逆が証明できる。つまり、無限集合はデデキント無限であることを以下のように証明できる[2]。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/262
264: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 10:48:25.45 ID:RRsRScoq >>262 念押しな(^^ (引用開始) 可算選択公理を仮定した無限との同値性の証明 デデキント無限集合が無限であることはZFで容易に証明される。実際、任意の有限集合はある有限順序数と等濃であって、有限順序数がデデキント有限であることは帰納法により証明できる。 可算選択公理を用いることによって、その逆が証明できる。つまり、無限集合はデデキント無限である (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/264
267: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/11(金) 19:05:02.65 ID:6s83KSTC >>262 >>264 やれやれ、馬鹿は全然理解してないくせに 二言目には選択公理と絶叫する悪癖があるなw だいたい、聞かれてるのはωにあたる ツェルメロ構成の集合をどうやって 定義するかだろ 何の考えもなく 「超限回のくり返し!!!」 とかわめき続けてるのは 正真正銘の馬鹿の証拠w http://rio2016.5ch.net/test/read.cgi/math/1570237031/267
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.047s