[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
251: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 06:49:54.09 ID:aKfhohl9 >>242 メモ:現代数学の”無限”のランドスケープ https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム?スコーレムの定理 (抜粋) レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。 そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。 正確な記述 ある構造がより小さい濃度の初等部分構造を持つとする定理の部分を下方レーヴェンハイム?スコーレムの定理 と呼ぶ。 ある構造がより大きい濃度の初等拡張を持つとする定理の部分を上方レーヴェンハイム?スコーレムの定理 と呼ぶ。 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。 この事実を定理の一部とする場合もある。 例と帰結 自然数を N、実数を R とする。 この定理によれば、 (N, +, ×, 0, 1) の理論(真の一階算術の理論)には非可算なモデルがあり、 (R, +, ×, 0, 1) の理論(実閉体の理論)には可算なモデルがある。 もちろん同型の違いを除いて、(N, +, ×, 0, 1) と (R, +, ×, 0, 1) を特徴付ける公理化が存在する。 レーヴェンハイム?スコーレムの定理は、それらの公理化が一階ではあり得ないことを示している。 例えば、線型順序の完備性は実数が完備な順序体であることを特徴付けるのに使われるが、その線型順序の完備性は一階の性質ではない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/251
252: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 06:50:20.34 ID:aKfhohl9 >>251 つづき 理論が範疇的 categorical であるとは、同型の違いを除いて唯一のモデルを持つことを意味する。 この用語は1904年、オズワルド・ヴェブレンが考案したもの[1]で、その後しばらくの間、数学者らは集合論を範疇的な一階の理論で記述することで、数学の堅固な基盤を築けると考えていた。 レーヴェンハイム-スコーレムの定理はこの希望への最初の打撃となった。 なぜなら、その定理によれば無限のモデルを持つ一階の理論は範疇的にはなり得ないからである。 さらに1931年、ゲーデルの不完全性定理によって希望は完全に打ち砕かれた。 レーヴェンハイム-スコーレムの定理から導かれる結論の多くは、一階とそうでないものの違いがはっきりしていなかった20世紀初頭の論理学者にとっては直観に反していた。 例えば、真の算術 (true arithmetic) には非可算なモデルがあり、それらは一階のペアノ算術を満足するが、同時に帰納的でない部分集合を持つ。 さらに悩ましかったのは、集合論の可算なモデルの存在である。 それにもかかわらず、集合論は実数が非可算であるという文を満たさなければならない。 この直観に反するような状況はスコーレムのパラドックスと呼ばれ、可算性 (countability) は絶対的 (absolute) ではないことを示している。 歴史 以下の記述は主に Dawson (1993) に基づいている。 モデル理論の初期の歴史を理解するには、統語論的整合性(一階論理の推論規則を使って導かれるものには矛盾がないこと)と充足可能性(satisfiability、モデルがあること)を区別しなければならない。 いくぶんか驚くべきことに、ゲーデルの完全性定理がこの区別を不要とする以前でさえも、整合性 (consistency) という用語は場合によって違う意味で使われていた。 「トアルフ・スコーレムは亡くなる直前まで、この定理に彼の名が冠せられていることに憤慨していたという。彼は非可算集合の存在そのものが不合理であるとし、実在しないと考えていた」 - Poizat (2000) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/252
253: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/11(金) 06:53:48.16 ID:6s83KSTC >>250-252 それ、安達のスレで書けよ 奴は、可算無限はともかく、非可算無限を認めたくないみたいだから http://rio2016.5ch.net/test/read.cgi/math/1570237031/253
261: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 10:29:27.72 ID:RRsRScoq >>251 メモ:現代数学の”無限”のランドスケープ 追加 https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90 デデキント無限 (抜粋) ZFにおけるデデキント無限 次の4条件は、ZF上同値である。特に、これらの同値性はACを用いないで証明できることに注意せよ。 ・A はデデキント無限である。 ・全射ではないが単射であるようなA からA への関数が存在する。 ・自然数の集合N からA への単射が存在する。 ・A は可算無限な部分集合を持つ。 どのようなデデキント無限集合A も以下の条件を満たす。 ・単射ではないが全射の、A からA への関数が存在する。 このことを、“A は双対デデキント無限である”という。A が双対デデキント無限であるならばA がデデキント無限であるということは(ACを除いたZF上で)証明可能でない。 どのような双対デデキント無限集合も次の(同値な)条件を満たす、ということがZF上で証明できる。 ・A から可算無限集合への全射が存在する。 ・A の冪集合がデデキント無限である。 (この条件を満たすことを、弱デデキント無限(weakly Dedekind infinite)であるということがある。) 弱デデキント無限であるならば無限であることはZFにおいて証明されている。 また、整列無限集合はデデキント無限であることもZFにおいて示されている。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/261
276: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/12(土) 09:18:29.19 ID:0oc9Ztsl >>275 どうも。レスありがとう >{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1} >には最大値が存在してしまうのでは? 別に言い訳するつもりはないけど >>272で同意したのは、 ツェルメロ構成では、「どこまで行っても単元集合しか出てこない」ということなのです で、あなたの {n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1} に対して >>266では F(X)={Y|∃x1∈ x2∈ x3∈‥xn Y=x1, X=xn} だったでしょ つまり、順序が逆 例えば 1,2,3,・・・,n は上昇列だが -n,・・・,-3,-2,-1 降下列です 公理的集合論から、自然数N(0,1,2,3,・・・,n,・・)が得られた後に 整数Zを構成して、負数 -n,・・・,-3,-2,-1 なる降下列の構成(無限降下列も可)は、ありでしょう いま、問題にしていることは、公理的集合論で 空集合Φから、後者関数のみを使って、作った集合で∈順序がどうなるか(無限降下列が存在するかどうか)? それは、後者関数の作り方にもよるけど、選択公理(あるいは可算選択公理)にも関連しているらしい(>>269)(^^ (もちろん、正則性公理も重要) そして、たとえ有限を扱っていても、青天井(いくらでも大きな)なら、 「いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならない」 (レーヴェンハイ-スコーレムの定理)みたいなことになる(>>251) で、まとまらないけど、 要するに、負数 -n,・・・,-3,-2,-1 なる降下列は、今論じている∈順序とは別と思う(おそらく一般的な順序型の議論になる) これ以上の細かい議論は、>>266 ID:YULRpgNc さんとよろしく (もしあなたと同一人物ならご容赦) (参考) https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイ-スコーレムの定理 (抜粋) 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。 この事実を定理の一部とする場合もある。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/276
297: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/12(土) 15:26:20.58 ID:0oc9Ztsl >>294 再度まとめておきます 現代数学の無限の議論で、 1.整列可能定理と関連して、デデキント無限とかの関連で(>>236-238)どこまでの強さの選択公理を採用するか(>>283)の問題がある 可算選択公理<従属選択公理<選択公理<連続体仮説 ですね。決定性公理は、別の系統なのでしょうね 2.レーヴェンハイム-スコーレムの定理に関連して(>>251-252) 一階述語論理に限定するのか? それとも、二階以上の高階述語論理を採用するのか? ゲーデル先生ご存命の20世紀前半は一階述語論理全盛で、「二階以上はパラドックスのおそれあり」で忌避されていた傾向あり ところが、いろいろあって、圏論などもその1つと思うが、「二階以上もやろう」という流れができた 3.あと、逆数学なんて流れもあるようです(「現代数学の全部を網羅する公理系ではなく、分野毎に特化した公理系」なのでしょうかね?) https://ja.wikipedia.org/wiki/%E9%80%86%E6%95%B0%E5%AD%A6 逆数学 (抜粋) 逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。 「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。 実際、逆数学の結果の多くは、計算可能性解析の結果を反映している。 逆数学は、Harvey Friedman (1975, 1976)によってはじめて言及された。基本文献は(Simpson 2009)を参照。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/297
554: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/01(日) 07:53:15.16 ID:id6ENHqe >>503 補足 >一階述語論理か >それ以上の高階述語論理なのかに無自覚ならば >所詮、有限と無限とをきちんと区別できない >それを知らずに議論するあわれな落ちこぼれたち >あわれな”なんとかさん”と同類じゃね!?w(^^; (まとめ引用)w(^^ >>251より https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム-スコーレムの定理 (抜粋) レーヴェンハイム-スコーレムの定理(英: Lowenheim-Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。 そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。 もちろん同型の違いを除いて、(N, +, ×, 0, 1) と (R, +, ×, 0, 1) を特徴付ける公理化が存在する。 レーヴェンハイム-スコーレムの定理は、それらの公理化が一階ではあり得ないことを示している。 例えば、線型順序の完備性は実数が完備な順序体であることを特徴付けるのに使われるが、その線型順序の完備性は一階の性質ではない。 >>491より https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E9%9B%86%E5%90%88 有限集合 (抜粋) 基礎付け問題 無限集合を擁護する数学者にとっても、ある重要な文脈では、有限集合と無限集合の形式的区別は微妙な問題として残った。 これはゲーデルの不完全性定理に端を発している。遺伝的有限集合はペアノ算術で解釈でき(逆もまた同様)、従ってペアノの理論体系の不完全性は遺伝的有限集合の理論にも存在することが暗に示されている。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/554
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.056s