[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
173: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 15:56:48.05 ID:d8OQiN+r >>154 追加 https://unaguna.jp/article/archives/15 U-naguna シリーズ: 集合論の言葉を使おう (準備編) > 集合論の言葉による自然数の表現 (抜粋) n の次の自然数を n∪{n} とする利点としては ・自然数 n に属するモノの個数は n となる ・自然数の大小関係 n<m が n∈m に一致する ことが挙げられる。1つ目の方は後の記事で「個数とは何か」や「個数を数える (counting) とは何か」を定義する際に役立つ (今までなんとなく個数を数えてきたが、集合論の言葉でもう少しかっちりと定義することができる)。2つ目の方は、大小関係が集合論の記号だけで簡潔に表せるようになるという点で良い。 すべての自然数が属する集合 公理 2 (無限公理). 略 すなわち、「すべての自然数が属する集合」が存在する。 ここで注意すべきは、この公理で存在が証明されるのは「すべての自然数が属する集合」であって、「すべての自然数が属して、それ以外のモノが属さない集合」ではない。あくまで「すべての自然数が属する集合」が1つは存在すると言っているのである。 以降では「すべての自然数が属して、それ以外のモノが属さない集合」を「自然数集合」と呼び ω と書くことにする (文脈によっては N で表すことも多いだろう)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/173
174: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 15:57:33.13 ID:d8OQiN+r >>173 つづき 数学的帰納法 さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。 ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。 余談 ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。 1∈3 高校数学の知識では「3は集合ではないので ∈ の右側に 3 を書くのはおかしい」となるのであろうが、我々が採用した「すべてのモノは集合である」論理では 3 も集合として定義しているのでその指摘は当たらない。 しかも、3 は {0,1,2} (0と1と2だけが属する集合) と定義されているので 1∈3 (1は3に属する) は正しい。 この点で微妙に高校数学の集合論と公理的集合論 (とりわけ ZF 公理系や ZFC 公理系を採用する集合論) には違いがある。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/174
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s