[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
159: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:21:36.72 ID:d8OQiN+r >>155 補足 >この用語が適切かどうか不明だが >「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう >(文学的表現では、底抜けってことですね) そういう目で見ると >>112 坪井明人 筑波大 11 整列集合 ”定理 93 (X, <) を順序集合とする.このとき次は同値である: 1. (X, <) は整列集合である; 2. (X, <) は全順序集合で,なおかつ無限降下列を持たない.” の証明を読むと、明らかに、無限降下列=底抜けの最小元を持たない無限単調減少列の意味ですね もちろん、>>155 「濃度と順序数 fujidig」さんのP17 命題 4 ”整列集合 X から無限強単調減少列”もこの意味 証明で ”x0 > x1 > x2 > . . . がとれると仮定する. すると X の部分集合 {x0, x1, x2, . . . } には最小元がないため整列性に反する.”と書いてありますからね(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/159
160: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:26:06.86 ID:d8OQiN+r >>159 つづき なので、正則性公理にいう ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味ですね(^^ これを、取り違えて 最小元を持つ、順序数の無限列に適用して、 「正則性公理に反する」とかは、いけませんね(^^ (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) 以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。 ・任意の空でない集合xに対して、∃y∈x,x∩y=0 ・∀xについて、∈がx上well-founded ・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/160
189: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 06:37:17.06 ID:2lTTrhZd まとめます 1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、 ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味です ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです (>>159-160ご参照) 2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する このとき、無限公理を適用しただけでは、 我々の必要とする自然数N(全ての有限nたちのみを含む集合)より大きな集合が出来てしまう それを、自然数Nに絞り込む操作を必要とする つまり、無限公理により、全ての有限nたちを超える元が出来てしまう そのような元たちは、1)で述べたように、正則性公理に反しないのです (>>110-112) 3)ツェルメロ構成では、aの後者関数;suc(a) := {a} なので この自然数構成で、全ての有限nたちを超える元が出来てしまう そのような元たちを絞って、N={Φ, {Φ}, {{Φ}}, …}と、自然数の集合Nができる そこで、全ての有限nたちを超える元たちの中で、最小の元が、ツェルメロ構成でのωに相当します(定義) (>>110>>151) 4)ところで、正式な順序数ωの定義は、本来は、下記”整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法”による ノイマン構成では、この定義がそのまま適用できる ツェルメロ構成では、下記”順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる”ので その方法により、ωを定義した上で、3)のツェルメロ構成でのωを再定義すれば良い QED (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 定義 整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって 略 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/189
311: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/12(土) 22:08:33.70 ID:0oc9Ztsl >>309 >{{…}} は正則性公理に反するのでZF内には存在できません (>>189より) 正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、 ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味です ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです (>>159-160ご参照) なお、>>310もご参照 http://rio2016.5ch.net/test/read.cgi/math/1570237031/311
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.056s