[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
151: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 11:23:00.82 ID:d8OQiN+r >>110 補足 >Infinity >This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. > (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….) で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki) (引用終り) ツェルメロ構成で、aの後者関数:suc(a) := {a} なので 上記、set a に対して set {a}が必ず属するという、無限公理の規定の仕方をしているのかな? (原典まで確認していないが) ノイマン流では、で、aの後者関数:suc(a) := a∪{a} なので この場合の無限公理は、set a に対して a∪{a}が必ず属すると規定される まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない だから、あとから不要なもの(後者)を排除するしかない では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 自然数 以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 ・ ・ と非常に単純な自然数になる。 https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 (抜粋) 定義 ZF公理系における公式な定義は次の通りである。 空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する: ∃A(Φ∈A∧∀x∈A(x∪{x}∈A)) http://rio2016.5ch.net/test/read.cgi/math/1570237031/151
152: 132人目の素数さん [sage] 2019/10/06(日) 11:34:36.37 ID:1g2Hn04k >>151 > では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて > だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの > ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね > 違いますよ。もし n+1:={n} と定義した場合は無限公理が保証してくれる無限集合をω'とした時、これは n∈ω'⇒n+1∈ω' を満たしていないからさらに議論が難しくなります。 それでも自然数全体を定義し、存在する事を証明する事はできますが、しかしそれはあくまで{0,1,2,‥‥}であって、あなたの求めるΩではありません。 証明をがどうこう考える以前にそもそもΩとは何かが定義されてないのに、それが存在する証明ができるはずありません。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/152
153: 132人目の素数さん [] 2019/10/06(日) 11:52:13.47 ID:9PvOfF3Z >>151 >まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな >このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない >だから、あとから不要なもの(後者)を排除するしかない >では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて >だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの >ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね これは酷い http://rio2016.5ch.net/test/read.cgi/math/1570237031/153
154: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 12:48:48.24 ID:d8OQiN+r >>151 追加 von Neumannで、自然数Nが構成できる(下記) 無限降下列 0∈1∈2・・∈N が出来る 無限公理によりできる集合N’には、自然数N以上の無限大の後者が含まれている そこから、不要元をそぎ落として、自然数Nにする 集合N’が、正則性公理に反するだと?(゜ロ゜; (参考) https://hc3.seikyou.ne.jp/home/Tetu.Makino/suu_no_taikei.pdf 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲 (山口大学工学部教授)2014 年 6 月 22 日 (抜粋) P3 1.3 自然数系の(本質的)一意性 自然数系の標準的な代表として用いることにして,これを N と記す。 他の自然数系はみな,N に同型である。 P4 集合論から自然数系を構成する方法としては, von Neumann の方法が知られている。 これは, 0 := Φ(空集合), 1 := {Φ}, 2 := {Φ, {Φ}}, ・ ・ ・ , s(n) := {0, 1, 2, ・ ・ ・ , n}, ・ ・ ・ とする。 また,Zermero の方法は, 0 := Φ, 1 := {Φ}, 2 := {{Φ}}, ・ ・ ・ , s(n) = {n}, ・ ・ ・ とする。 前者では,たとえば,3 ∈ 5 であるが, 後者では 3 not∈ 5 となり, 同じではないが, どちらが優れているとも云いがたい。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/154
162: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 13:38:42.40 ID:d8OQiN+r >>151 補足 ツェルメロの自然数構成で 0:Φ 1:{Φ} 2:{{Φ}} ・ ・ n:{・・{Φ}・・} n重 これで、全ての有限の自然数は構成できる 無限公理で、Nとωが出来たあとに、 ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う) と定義すれば良い 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 但し、下記”順序型というアイデア”を使う QED https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 次が成り立つ: 5.順序数からなる空でない集合には必ず最小元が存在する 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 注釈 ^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。 その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。 ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。 したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。 これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。 だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。 ただし、整列集合の順序型と順序数は別のものになる。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/162
178: 132人目の素数さん [sage] 2019/10/06(日) 18:31:31.23 ID:Gc2q5hFd >>162 > >>151 補足 > ツェルメロの自然数構成で > 0:Φ > 1:{Φ} > 2:{{Φ}} > ・ > ・ > n:{・・{Φ}・・} n重 > これで、全ての有限の自然数は構成できる > 無限公理で、Nとωが出来たあとに、 > ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う) > と定義すれば良い > 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 > 但し、下記”順序型というアイデア”を使う > QED と定義すれば良いって定義になってないでしょ? この場合 X∈Ω と同値であるXについての条件を書き下さねばなりません。 それはなんですか? アイデアがあるならそれに従って定義を書き下してください。このアイデアにそってやればできるなんて証明は通用しません。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/178
189: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/07(月) 06:37:17.06 ID:2lTTrhZd まとめます 1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、 ”無限下降列である x∋x1∋x2∋・・・ ”は 底抜けの最小元を持たない無限単調減少列の意味です ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです (>>159-160ご参照) 2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する このとき、無限公理を適用しただけでは、 我々の必要とする自然数N(全ての有限nたちのみを含む集合)より大きな集合が出来てしまう それを、自然数Nに絞り込む操作を必要とする つまり、無限公理により、全ての有限nたちを超える元が出来てしまう そのような元たちは、1)で述べたように、正則性公理に反しないのです (>>110-112) 3)ツェルメロ構成では、aの後者関数;suc(a) := {a} なので この自然数構成で、全ての有限nたちを超える元が出来てしまう そのような元たちを絞って、N={Φ, {Φ}, {{Φ}}, …}と、自然数の集合Nができる そこで、全ての有限nたちを超える元たちの中で、最小の元が、ツェルメロ構成でのωに相当します(定義) (>>110>>151) 4)ところで、正式な順序数ωの定義は、本来は、下記”整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法”による ノイマン構成では、この定義がそのまま適用できる ツェルメロ構成では、下記”順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる”ので その方法により、ωを定義した上で、3)のツェルメロ構成でのωを再定義すれば良い QED (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 定義 整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって 略 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/189
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.150s