[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
491
(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)20:58 ID:qnEhNItW(1/12) AAS
>>485
どこかで読んだのだが、厳密性とは、所詮その時代の水準のものでしかないとか言われていた
昔(20世紀前半)は、一階述語論理が重視されたが
20世紀後半からは、一階述語論理偏重を見直す動きがある

外部リンク:ja.wikipedia.org
有限集合
(抜粋)
省9
492
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)20:59 ID:qnEhNItW(2/12) AAS
>>491
つづき

単射だが全射ではない関数 f: S → S が存在するとき、集合 S をデデキント無限集合と呼ぶ。そのような関数は S と S の真部分集合(f の像)との間の全単射を表している。
デデキント無限集合 S の元 x が f の像に属さないとき、x, f(x), f(f(x)), ... のようにして S の異なる元の無限の列を得ることができる。逆に S の元の列 x1, x2, x3, ... があるとき、この列上の元に対しては {\displaystyle f(x_{i})=x_{i+1}}f(x_{i})=x_{{i+1}} となり、それ以外の元については恒等関数として振舞う関数 f を定義できる。
従って、デデキント無限集合には自然数と全単射的に対応する部分集合が含まれる。デデキント有限集合とは、全ての単射自己写像が全射でもある場合を指す。

クラトフスキの有限性の定義は次の通りである。任意の集合 S について、和集合の二項演算は冪集合 P(S) に半束構造を与える。
空集合と単集合から生成した半束を K(S) と記し、S が K(S) に属する場合、S をクラトフスキ有限集合と呼ぶ。直観的に K(S) には S の有限な部分集合が含まれる。
省3
493
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)21:00 ID:qnEhNItW(3/12) AAS
>>492
つづき

外部リンク:ja.wikipedia.org
一階述語論理
(抜粋)
一階述語論理に関する定理
以下、健全性定理と完全性定理以外の重要な定理を列挙する。
省10
494
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)21:00 ID:qnEhNItW(4/12) AAS
>>493
つづき

外部リンク:ja.wikipedia.org
レーヴェンハイム?スコーレムの定理
(抜粋)
レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。
そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
省5
495: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)21:01 ID:qnEhNItW(5/12) AAS
>>494

つづき

外部リンク:ja.wikipedia.org
無限論理
(抜粋)
数理論理学または順序数の概念に詳しくない者はまずそちらの記事を参考にすることが推奨される。
無限論理 (むげんろんり、英: infinitary logic) は、無限に長い言明および/または無限に長い証明を許す論理である。
省14
501
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)21:17 ID:qnEhNItW(6/12) AAS
>>491 補足

すでに、このスレの>>91に示したように、
天才Zermeloが、シングルトンによる自然数の構成を与えた(1908年)
(”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”)

そして、確かに、Zermeloの構成は批判され、その後ノイマン構成が採用された
だが、天才Zermeloのシングルトンによる自然数の構成が決して間違っていた訳では無い

無数の超準モデルの1つだよ。(レーヴェンハイム=スコーレムの定理)
省11
502
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)21:18 ID:qnEhNItW(7/12) AAS
>>501
つづき

外部リンク:ja.wikipedia.org
ペアノの公理
(抜粋)
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理) 二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。

外部リンク:ja.wikipedia.org
省16
503
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:01 ID:qnEhNItW(8/12) AAS
>>491 補足

(引用開始)
無限集合を擁護する数学者にとっても、ある重要な文脈では、有限集合と無限集合の形式的区別は微妙な問題として残った。
これはゲーデルの不完全性定理に端を発している。

遺伝的有限集合はペアノ算術で解釈でき(逆もまた同様)、従ってペアノの理論体系の不完全性は遺伝的有限集合の理論にも存在することが暗に示されている。
特に、どちらの理論にもいわゆる非標準モデルの過剰が存在する。

見かけ上のパラドックスとして、遺伝的有限集合の非標準モデルは無限集合を含んでいるが、
省10
504
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:09 ID:qnEhNItW(9/12) AAS
>>491
>基礎付け問題

これは、下記が、元記事だな(^^

外部リンク:en.wikipedia.org
Finite set
(抜粋)
Contents
省14
505
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:11 ID:qnEhNItW(10/12) AAS
>>504

つづき

(This can happen when the model lacks the sets or functions necessary to witness the infinitude of these sets.)
On account of the incompleteness theorems, no first-order predicate, nor even any recursive scheme of first-order predicates, can characterize the standard part of all such models. So, at least from the point of view of first-order logic, one can only hope to describe finiteness approximately.

More generally, informal notions like set, and particularly finite set, may receive interpretations across a range of formal systems varying in their axiomatics and logical apparatus. The best known axiomatic set theories include Zermelo-Fraenkel set theory (ZF), Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC),
Von Neumann?Bernays?Godel set theory (NBG), Non-well-founded set theory, Bertrand Russell's Type theory and all the theories of their various models. One may also choose among classical first-order logic, various higher-order logics and intuitionistic logic.

A formalist might see the meaning[citation needed] of set varying from system to system. Some kinds of Platonists might view particular formal systems as approximating an underlying reality.
省4
506
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:12 ID:qnEhNItW(11/12) AAS
>>505

つづき

Various properties that single out the finite sets among all sets in the theory ZFC turn out logically inequivalent in weaker systems such as ZF or intuitionistic set theories. Two definitions feature prominently in the literature, one due to Richard Dedekind, the other to Kazimierz Kuratowski. (Kuratowski's is the definition used above.)

A set S is called Dedekind infinite if there exists an injective, non-surjective function {\displaystyle f:S\rightarrow S}f:S\rightarrow S.
Such a function exhibits a bijection between S and a proper subset of S, namely the image of f. Given a Dedekind infinite set S, a function f, and an element x that is not in the image of f, we can form an infinite sequence of distinct elements of S, namely {\displaystyle x,f(x),f(f(x)),...}x,f(x),f(f(x)),....
Conversely, given a sequence in S consisting of distinct elements {\displaystyle x_{1},x_{2},x_{3},...}x_{1},x_{2},x_{3},..., we can define a function f such that on elements in the sequence {\displaystyle f(x_{i})=x_{i+1}}{\displaystyle f(x_{i})=x_{i+1}} and f behaves like the identity function otherwise.
Thus Dedekind infinite sets contain subsets that correspond bijectively with the natural numbers. Dedekind finite naturally means that every injective self-map is also surjective.
省4
507: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:13 ID:qnEhNItW(12/12) AAS
>>506
つづき

Readers unfamiliar with semilattices and other notions of abstract algebra may prefer an entirely elementary formulation. Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that:

・X contains the empty set;
・For every set T in P(S), if X contains T then X also contains the union of T with any singleton.

Then K(S) may be defined as the intersection of M.

In ZF, Kuratowski finite implies Dedekind finite, but not vice versa. In the parlance of a popular pedagogical formulation, when the axiom of choice fails badly, one may have an infinite family of socks with no way to choose one sock from more than finitely many of the pairs.
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s