[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
554
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)07:53 ID:id6ENHqe(1/6) AAS
>>503 補足
>一階述語論理か
>それ以上の高階述語論理なのかに無自覚ならば
>所詮、有限と無限とをきちんと区別できない
>それを知らずに議論するあわれな落ちこぼれたち
>あわれな”なんとかさん”と同類じゃね!?w(^^;

(まとめ引用)w(^^
省18
555
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)07:53 ID:id6ENHqe(2/6) AAS
>>554
つづき

特に、どちらの理論にもいわゆる非標準モデルの過剰が存在する。見かけ上のパラドックスとして、遺伝的有限集合の非標準モデルは無限集合を含んでいるが、それら無限集合はそのモデル内では有限に見える(これは、それら集合の無限性を証明するのに必要な集合や関数をモデルが持たない場合に生じる)。
不完全性定理があるため、一階述語論理やその再帰的適用では、そのようなモデルすべての標準部分を特徴付けることができない。
従って、一階述語論理の観点からは、有限性をおおよそ特徴付けることしか望めない。
(引用終り)
以上
556
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)08:00 ID:id6ENHqe(3/6) AAS
>>554-555

(抜粋)
レーヴェンハイム-スコーレムの定理
そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。

有限集合
有限集合と無限集合の形式的区別は微妙な問題として残った。
省11
563
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)09:03 ID:id6ENHqe(4/6) AAS
>>552 補足

下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう
数直線の区間[0,2]で
n→1-(1/(1+n))=n/(1+n)
と変換すると
0→1-1/1=0
1→1-1/2=1/2
省26
566
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)10:22 ID:id6ENHqe(5/6) AAS
>>564-565
おサルの力量は、良く分かったよ
おまえは、確かに落ちこぼれだわ
おまえには、哀れな素人相手が適当だよ
がんばれよ
568
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)14:40 ID:id6ENHqe(6/6) AAS
>>563 補足
>下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう

順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”に対応する点列を数直線上に構成した

0,1/2,2/3,3/4,・・,1(←ω),1+1/2(←ω+1)
さて、これらの点列に合わせて、縦棒|を配置する
|,|,|,|,・・,|,|

上記を左右反転する
省13
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s