[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
128: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:49:45.09 ID:zyaquwkF >>123 >いい年してベビーメタルの大ファンで、 安達、いいタイミングでいってくれたな 10/11にBABYMETALの3rd Album"Metal Galaxy"が出るぞ 聴きやがれw >乃木坂とかAKBグループのファンでもある 悪いが、そっちはそれほど興味ないwww 乃木坂はSU-METALの姉がいたからチェックしてただけ しかしどいつもこいつもカスばかり・・・ 但し生田絵梨花と久保史緒里は除くw BABYMETALに一番近いのは・・・ももクロかもな 少なくとも百田夏菜子のエビぞりジャンプは アイドル史に残る名パフォーマンス http://rio2016.5ch.net/test/read.cgi/math/1570237031/128
251: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 06:49:54.09 ID:aKfhohl9 >>242 メモ:現代数学の”無限”のランドスケープ https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム?スコーレムの定理 (抜粋) レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。 そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。 正確な記述 ある構造がより小さい濃度の初等部分構造を持つとする定理の部分を下方レーヴェンハイム?スコーレムの定理 と呼ぶ。 ある構造がより大きい濃度の初等拡張を持つとする定理の部分を上方レーヴェンハイム?スコーレムの定理 と呼ぶ。 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。 この事実を定理の一部とする場合もある。 例と帰結 自然数を N、実数を R とする。 この定理によれば、 (N, +, ×, 0, 1) の理論(真の一階算術の理論)には非可算なモデルがあり、 (R, +, ×, 0, 1) の理論(実閉体の理論)には可算なモデルがある。 もちろん同型の違いを除いて、(N, +, ×, 0, 1) と (R, +, ×, 0, 1) を特徴付ける公理化が存在する。 レーヴェンハイム?スコーレムの定理は、それらの公理化が一階ではあり得ないことを示している。 例えば、線型順序の完備性は実数が完備な順序体であることを特徴付けるのに使われるが、その線型順序の完備性は一階の性質ではない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/251
309: 132人目の素数さん [] 2019/10/12(土) 18:14:44.09 ID:l44Ha7GI {{…}} は正則性公理に反するのでZF内には存在できません http://rio2016.5ch.net/test/read.cgi/math/1570237031/309
453: 132人目の素数さん [sage] 2019/10/22(火) 00:56:52.09 ID:81NNHuB4 ホントにわかってないな? Uの各元のシングルトンはまたUの元だよ? Uにはシングルトンでない元も山ほど入ってるんだよ? 君が今存在してるって言ってるΩは Ω∋x1∋x2‥∋xnとだどって行っていつまでもシングルトンしか出てこないものでしょ? Uにはシングルトンでも何でもないものもいっぱいはいってるし、そもそもU自体シングルトンじゃないでしょ? 別スレ見ててもわかるけどとても他人と数学議論ができるレベルにないよ。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/453
504: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/11/27(水) 22:09:56.09 ID:qnEhNItW >>491 >基礎付け問題 これは、下記が、元記事だな(^^ https://en.wikipedia.org/wiki/Finite_set Finite set (抜粋) Contents 1 Definition and terminology 2 Basic properties 3 Necessary and sufficient conditions for finiteness 4 Foundational issues 5 Set-theoretic definitions of finiteness 5.1 Other concepts of finiteness Foundational issues Georg Cantor initiated his theory of sets in order to provide a mathematical treatment of infinite sets. Thus the distinction between the finite and the infinite lies at the core of set theory. Certain foundationalists, the strict finitists, reject the existence of infinite sets and thus recommend a mathematics based solely on finite sets. Mainstream mathematicians consider strict finitism too confining, but acknowledge its relative consistency: the universe of hereditarily finite sets constitutes a model of Zermelo?Fraenkel set theory with the axiom of infinity replaced by its negation. Even for those mathematicians who embrace infinite sets, in certain important contexts, the formal distinction between the finite and the infinite can remain a delicate matter. The difficulty stems from Godel's incompleteness theorems. One can interpret the theory of hereditarily finite sets within Peano arithmetic (and certainly also vice versa), so the incompleteness of the theory of Peano arithmetic implies that of the theory of hereditarily finite sets. In particular, there exists a plethora of so-called non-standard models of both theories. A seeming paradox is that there are non-standard models of the theory of hereditarily finite sets which contain infinite sets, but these infinite sets look finite from within the model. つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/504
639: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/07(土) 15:45:48.09 ID:H2e5WMAT >>636 補足 ”「集合のいかなる∈列も有限長で終わる」 というのが正則性公理ですから” は間違い ”真の無限降下列をもたない”ってことね ”ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。”は、説明不足だが、∈による二項関係で、真の”真の無限降下列をもたない”というのが、正則性の公理 詳しくは、下記の渕野 昌先生を見て下さい(^^; https://fuchino(URLがNGなので、キーワードでググれ(^^ ) 基礎の公理の成り立たない集合論 (non well-founded set theory) について 渕野 昌(Sakae Fuchino) Last modified: Sat Aug 13 (抜粋) なぜだかは分らない が,∈-無限下降列に対して病的な興味を示す素人数学者が後をたたないからで ある. 私の知っている例でも,体系の言語で記述される(内的な)無限降下列 とモデルでの無限降下列の区別さえ定かでないような,∈ の整列性を仮定し ない集合論に関するあやしげな博士論文が,集合論以外の専門の数学者による 審査で通ってしまった,という,ある旧帝国大学*2での最近の事例がある. こ のような不愉快な傾向に拍車をかけるようなまねはくれぐれもやめてほしい, と強く希望する次第である. 基礎の公理 (Axiom of Foundation) は, (1) すべての集合 x に対し,x の要素で, ∈ (の transitive closure として得られる(前)順序)に関して極小なものが存在する ことを主張するものです.この公理により,∈-列のループ(特に長さが 1 のループ x ∈ x)や, ∈ に関する無限下降列 x1 ∋ x2 ∋ x3 ∋ ・・・ が存在しないことなどが帰結されます. http://rio2016.5ch.net/test/read.cgi/math/1570237031/639
783: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/15(日) 11:03:39.09 ID:BvQtIPz4 >>775 補足 (>>725より) <ノイマン構成> 0 := {}, suc(a) :=a∪{a} と定義する 0 := {} 1 := suc(0) = {0} = {{}} 2 := suc(1) = {0, 1} = {0, {0}} = { {}, {{}} } 3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { {}, {{}}, { {}, {{}} } } 等々 (>>728より) <ノイマン構成>にしろ、<Zermelo構成>にしろ 0,1,2,3,・・・たちを集合として見たら 上昇列:0∈1∈2∈3∈4∈… が構成される (>>690より) 1.無限公理を適用して、全ての後者関数を含む無限集合の存在を認める 2.そうすると、無限集合はできるが このままでは、過剰な後者を含んでいる 欲しいのは、ジャスト自然数の集合N 3.従って、自然数集合Nには不要な、過剰な後者を取り除きます で、<ノイマン構成>で自然数集合Nができる N:={0,1,2・・n・・} (全ての有限の自然数nを集めたもの) 当然、要素の全ての有限の自然数nは、後者関数により生成されている 上昇列:0,1,2・・n・・ これは、可算無限長だが、整礎であり、正則性公理には反しない <ノイマン構成>では、Nが∞に相当し順序数ω 上昇列:0,1,2・・n・・ω Nの後者も定義できる、suc(N) :=N∪{N} 明らかにN≠N∪{N} さて、<Zermelo構成>で、シングルトンを用いて同じことができる 上昇列:0,1,2・・n・・ω これは、可算無限長だが、整礎であり、正則性公理には反しない ωの後者も定義できる、suc(ω) :={ω} 明らかにω≠{ω} <Zermelo構成>の場合、ωは最小の可算無限シングルトンになる 繰返すが、上昇列は可算無限長だが、整礎であり、正則性公理には反しない QED (^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/783
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s