[過去ログ] 現代数学の系譜 カントル 超限集合論 (802レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
73: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)16:23 ID:JrhjRl4x(31/46) AAS
>>72
つづき
外部リンク:ja.wikipedia.org
無限公理
(抜粋)
定義
ZF公理系における公式な定義は次の通りである。
空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
解釈と帰結
上記定義では「無限」という言葉は用いられていないが、この公理によって(少なくとも1つの)無限集合の存在が保証されることになる。
まず定義中の集合 A(注:無限集合) は以下の性質を満たすことを確認できる。
(以下同様に繰り返す)
各手続きで得られた集合を要素とする集合を B:={Φ,{Φ},{Φ,{Φ}},・・・} とおくと、 B は A の部分集合である。
この手続きは何回でも繰り返すことができるが、もし有限回で終えた場合、 B は有限集合であり、 A≠Bである。
なぜならば定義により B∪{B}∈A であるが、B∪{B} not∈B となるからである。
一方 A が有限集合であれば、この手続きを繰り返すことで B が A よりも多くの要素をもつことができてしまう。
従って A は有限集合ではない(すなわち無限集合である)ため、
無限公理を採用すれば直ちに無限集合の存在を認めることになる。
上記の手続きはペアノの公理における自然数の構成方法と同様である。
ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合)
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
あと 729 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.015s