[過去ログ] 現代数学の系譜 カントル 超限集合論 (802レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
731
(1): 2019/12/14(土)09:14 ID:CsbquFhS(4/18) AAS
>>729
>無限集合の公理によりできる集合 M には、自然数Nに余分な(過剰)要素が存在する

「存在する」と言い切った瞬間、トンデモになる

無限集合の公理を満たすいかなる集合にも存在する「過剰」要素があるなら
共通部分をとったところで排除できないから

つまり、「過剰」要素を全くもたないものがある

>過剰要素は、有限の要素ではありえない
>(∵有限ならば自然数Nの要素)

ちょっとなにいってるのか分からない(嘲)

無限公理に反しないなら、別にどんな集合でもいい

>従って、ノイマン構成では、自然数Nを超える無限要素が構成できる

マジでなにいってるのか分からない(嘲)

無限集合は無限公理でつくられる 
●違いがいう「過剰」要素からは作れない

>ノイマン構成とZermelo構成とは、一対一対応がつくから
>Zermelo構成にも、自然数Nを超える無限要素が構成できる

ノイマンのωもツェルメロのΩもそれぞれ
{}∈ω∧(x∈ω⇒x∪{x}∈ω)
{}∈Ω∧(x∈Ω⇒{x}∈Ω)
から作られるという点で対応している

>それ(Ω)を、{{…}}(>>720)と簡単に表現しただけのことで
Ωがシングルトンだというのは●違いの妄想
1-
あと 71 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.012s