[過去ログ]
現代数学の系譜 カントル 超限集合論 (802レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
722: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/14(土) 07:47:25.56 ID:s6Tab8iq >>713 文字化けを直して、再引用しよう http://web.mat.bham.ac.uk/R.W.Kaye/logic/foundation.html Foundation and epsilon-induction (抜粋) 1. Introduction Either by examining the sets created in the first few levels of the cumulative hierarchy or from other means, via considering the idea of constructions of sets perhaps, we conclude that we do not expect sets to have infinite descending sequences x0∋x1∋x2∋x3∋x4∋… at least for sets in the cumulative hierarchy of constructed sets. The axioms of Zermelo-Fraenkel set theory are intended to represent axioms true in this hierarchy, so we expect to have an axiom stating there can be no such descending sequence. Unfortunately, the statement that there is no such descending sequence is not first order, but second order. This is analogous to the fact that there are nonstandard structures satisfying all first order sentences of arithmetic true in N. However, the example of arithmetic provides at least one clue as to a powerful axiom scheme true in all structures without infinite descending chains: induction. Applied to set theory we have the axiom scheme of ∈-induction. Axiom Scheme of ∈-Induction: For all first order formulas Φ(x,a ̄) of the language L∈, ∀a ̄(∀x(∀y∈xΦ(y)→Φ(x))→∀xΦ(x,a ̄)). We are not going to adopt this as an axiom scheme for Zermelo Fraekel because it will follow from other axioms, and it will be instructive to see how that happens. We will, however, adopt the following special case of ∈-Induction. Axiom of Foundation: ∀x(∃y y∈x→∃y(y∈x∧¬∃z(z∈x∧z∈y))). http://rio2016.5ch.net/test/read.cgi/math/1570237031/722
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 80 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s