[過去ログ]
現代数学の系譜 カントル 超限集合論 (802レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
48: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 14:48:04.21 ID:JrhjRl4x >>31 さて、 「自然数 ノイマン構成の集合Nから、{・・・{Φ}・・・}({}はω重)なる集合が取り出せる」話(^^ ・自然数 ノイマン構成 0:Φ 1:{Φ} 2:{Φ,{Φ}}→{{Φ}}(一番右以外のΦを除く。{}は2重) 3:{Φ,{Φ},{Φ,{Φ}}}→{{{Φ}}}(一番右以外のΦを除くことを繰返す) ・ ・ n:{Φ,{Φ},{Φ,{Φ}},・・}→{・・{Φ}・・}(一番右以外のΦを除くことを繰返す。{}はn重) ・ ・ ω:N={Φ,{Φ},{Φ,{Φ}},・・・}→{・・・{Φ}・・・}(一番右以外のΦを除くことを繰返す。{}はω重) 自然数 ノイマン構成の集合Nから、{・・・{Φ}・・・}({}はω重)なる集合が取り出せる これが、ツェルメロ構成のω {・・・{Φ}・・・}({}はω重)に相当しますね つまり、ノイマン構成とツェルメロ構成とは、一対一に対応していますよ。当たり前ですが(^^ なので、ノイマン構成でωが可能なら、ツェルメロ構成でそれに相当する集合ωが存在し得るのです ここで、 ”(一番右以外のΦを除くことを繰返す。{}はn重)”とか ”(一番右以外のΦを除くことを繰返す。{}はω重)”とかは 分出公理(下記)を(繰り返し)使うと思います (参考) https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 (抜粋) この構成法はジョン・フォン・ノイマンによる[1]。 http://tech-blog.rei-frontier.jp/entry/2017/11/02/102042 Rei Frontier Tech Blog 2017-11-02 ZFC公理系について:その1 (抜粋) 分出公理と共通部分 次の公理を導入しましょう。 (Set6') 分出公理 ∀a∃b∀x(x∈b⇔x∈a∧P(x)). "普通の言葉"で述べると、 「任意の集合aに対して、P(x)が成り立つようなaの元xの全体からなるaの部分集合bが存在する」といえます。 番号にダッシュ'がついているのは、分出公理は後々に出てくる公理から証明されるので、ZFCに数える必要がないためです。 外延性公理によってこのようなbは確定し、 {x∈a?P(x)} と表されます。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/48
49: 132人目の素数さん [sage] 2019/10/05(土) 14:57:09.95 ID:kZwmbLNI >>48 >ω:N={Φ,{Φ},{Φ,{Φ}},・・・}→{・・・{Φ}・・・}(一番右以外のΦを除くことを繰返す。{}はω重) ◆e.a0E5TtKEさん、あなたの躓いた石を見つけましたよ N={Φ,{Φ},{Φ,{Φ}},・・・}に一番右の要素は存在しません したがって、そのやり方では {・・・{Φ}・・・} はできません >つまり、ノイマン構成とツェルメロ構成とは、一対一に対応していますよ。当たり前ですが 自然数の範囲では一対一に対応しますが、 Nに対する{・・・{Φ}・・・}は存在しません 「最大の自然数は存在しない」と理解している人なら当たり前ですが (逆にいえば、当たり前でない人は、最大の自然数がある、と誤解している) http://rio2016.5ch.net/test/read.cgi/math/1570237031/49
50: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:07:03.18 ID:JrhjRl4x >>46 >反駁するなら集合論の中でやってください えーと、これなんかどうしょうか https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 順序数の大小関係 任意の順序数 α, β, γ に対して次が成り立つことが示される: α not∈ α, α ∈ β かつ β ∈ γ ⇒ α ∈ γ, α ∈ β または α = β または β ∈ α 。 そこで、α ∈ β のとき β は α より大きいといい、α < β と書く。 この定義と順序数の要素はまた順序数であるという性質から、すべての順序数は自分自身より小さな順序数全体の集合と等しいと言うことができる。 ω より小さな順序数(すなわち自然数)を有限順序数と呼び、ω 以上の(すなわち ω と等しいか ω より大きい)順序数を超限順序数と呼ぶ。 順序数の大小関係に関して次が成り立つ: 5.順序数からなる空でない集合には必ず最小元が存在する。 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。 だがそれで終わりではない。 無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/50
51: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:11:17.39 ID:JrhjRl4x >>49 >◆e.a0E5TtKEさん、あなたの躓いた石を見つけましたよ >N={Φ,{Φ},{Φ,{Φ}},・・・}に一番右の要素は存在しません いえいえ 極限ですよ 有限の n:{Φ,{Φ},{Φ,{Φ}},・・}→{・・{Φ}・・}(一番右以外のΦを除くことを繰返す。{}はn重) ここで、n→∞とする n→∞の極限を正統化するのが、無限公理でしょ(^^ n→∞の極限が分からないと、>>42の極限順序数 ωが集積点であるということが理解できない http://rio2016.5ch.net/test/read.cgi/math/1570237031/51
52: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:17:14.26 ID:JrhjRl4x >>42 補足します 閉区間[0,1]内の数列 0=1-1/1,1-1/2,1-1/3,・・,1-1/n,・・ を考えます。n→∞で、1-1/n→1に収束します。そして、[0,1]の点1は、集積点です 1)nが任意の自然数では、数列は、半開区間[0,1 )内です 2)nが自然数Nの全ての要素を渡りきって、ωに到達したときに、1-1/n→1に到達します 3)任意の1-1/nから点1の間に、無数の数列を構成する点があるということ http://rio2016.5ch.net/test/read.cgi/math/1570237031/52
53: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:26:32.40 ID:JrhjRl4x >>4 (再録) なお、議論の前提として、ある程度、標準的に認められている現代数学の成果 テキストや、ウェブサイトにある、現代数学の成果は認めるものとしましょう (そうしないと、全てを公理からの構成や厳密な証明を求めるようなことをすると、余白が足りない(時間も足りない)) (引用終り) これ思い出しておいてくださいね それで https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 任意の自然数よりも大きい最小の超限順序数 ω (抜粋) 特徴付け 極限順序数は他にもいろいろなやり方で定義できる: ・順序数全体の成す類(クラス)において順序位相に関する極限点 (ほかの順序数は孤立点となる) https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9 集積点/極限点 (抜粋) 集積点あるいは極限点は、位相空間 X の部分集合 S に対して定義される概念 定義 位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である (引用終り) これ、認めましょうね 超限順序数 ωが、極限点であること、任意の近傍が S の点を無限に含むという条件に同値であること だから、超限順序数 ωから、任意の有限順序数nの間には、「S の点を無限に含む」つまり、無限の順序数がある http://rio2016.5ch.net/test/read.cgi/math/1570237031/53
54: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:35:29.82 ID:JrhjRl4x >>50 >>53 補足します https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。 だがそれで終わりではない。 無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。 (引用終り) このような、順序数の無限の列が、ZFCで構成できる 多分、ノイマン宇宙とかですかね。あるいは、到達不能な巨大基数か(^^ で、例えば、最小の超限順序数 ωなどから、 下の有限順序数nの世界へ行くのに 無限上昇列を逆に辿れば、無限に降下する列になる でも、これを正則性公理で禁止するということはおかしいですよ つまり、正則性公理のいう無限降下列禁止と、 超限順序数 ωなどから無限上昇列を逆に辿る話とは別ものと考えざるをえないということ http://rio2016.5ch.net/test/read.cgi/math/1570237031/54
55: 132人目の素数さん [sage] 2019/10/05(土) 15:37:48.61 ID:kZwmbLNI >>51 >>>N={Φ,{Φ},{Φ,{Φ}},・・・}に一番右の要素は存在しません >いえいえ、極限ですよ 極限は、N自体であって、Nの要素の中にはありませんよ 無限公理の式 ∃ω.{}∈ω∧∀x.x∈ω⇒x∪{x}∈ω とくにx∈ω⇒x∪{x}∈ωのところ つまりいかなる元xもその右側にx∪{x}なるxがある といってるわけですから、一番右の元など存在しようがないのです まず、ωを定義する式を真っ先に読むこと それより先に読むべきものなどありませんよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/55
56: 132人目の素数さん [sage] 2019/10/05(土) 15:40:26.14 ID:o3FGv8uB おっちゃんです。 >>52 >いえいえ >極限ですよ > >有限の >n:{Φ,{Φ},{Φ,{Φ}},・・}→{・・{Φ}・・}(一番右以外のΦを除くことを繰返す。{}はn重) > >ここで、n→∞とする 訂正して解釈して読んでも、極限は極限は存在せず、第n項がnの実数列 {n} は発散する。 >n→∞の極限を正統化するのが、無限公理でしょ(^^ 自然数全体の集合Nや無限集合の存在性を保証するのが無限公理。 可算無限無限集合Nの存在性の保証はペアノの公理で済む。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/56
57: 132人目の素数さん [sage] 2019/10/05(土) 15:40:28.38 ID:kZwmbLNI >>53 >議論の前提として、ある程度、標準的に認められている >現代数学の成果は認めるものとしましょう あなたは無限公理の式を読みましたか?理解しましたか? わたしにはとてもそうは思えません もし一度でも読んで理解したなら 「ωの一番右の元」なんて存在しないものを 口にすることは絶対にしない筈ですから まず公理の式を見ましょう そして理解しましょう それなしに書き込むことはやめてください 迷惑です http://rio2016.5ch.net/test/read.cgi/math/1570237031/57
58: 132人目の素数さん [sage] 2019/10/05(土) 15:45:35.40 ID:o3FGv8uB >>51 >>56の訂正:極限は極限は → 極限は >>56は>>51宛て。 まあ、どっちもスレ主だが。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/58
59: 132人目の素数さん [sage] 2019/10/05(土) 15:46:12.91 ID:kZwmbLNI >>53 >https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 >極限順序数 ”極限順序数は他にもいろいろなやり方で定義できる”のところで 引用するならまずここでしょう。読みましたか? ・最大元を持たない非零順序数。 「最大元を持たない」と書かれていますね ωには最大元、つまり一番右の元はない、ということです あなたはwikipediaの文章も読まずに(読んでも理解せずに) 全く矛盾することを書いたんですよ それじゃ検索しても無駄ですね 検索したなら一字一句読んで理解してください 理解せずに全く正反対の嘘を書かれては迷惑です http://rio2016.5ch.net/test/read.cgi/math/1570237031/59
60: 132人目の素数さん [sage] 2019/10/05(土) 15:53:27.66 ID:kZwmbLNI >>54 >最小の超限順序数 ωから、下の有限順序数nの世界へ行くのに >無限上昇列を逆に辿れば、無限に降下する列になる いつまで、その嘘を書き続けるおつもりですか? まず 0,1,2,… という無限列にはωは現れません 現れないものを起点とする列は作れませんね 次に 0,1,2,… という無限列の右側に無理矢理ωを追加した列を ひっくりかえしたとしましょう そのとき、ωのすぐ右側には何が来ますか? 答えられないでしょう 当然です そんなものは存在しないからです 無限公理のωからの下降列を構成する場合 ωの次に来るのは別にω未満の最大の元ではありません ω未満のnであればなんでもいいんです そしてそのようなnはみな自然数ですから 結局下降列は有限列になります >これを正則性公理で禁止するということはおかしいですよ 存在しない無限下降列は禁止できないですよ もし、存在すると言い切るのなら、 ωのすぐ右側の元を書いてみてください その瞬間、あなたも自分が間違っていたと気づく筈 もし気づかないなら、知的誠実さが欠如しています http://rio2016.5ch.net/test/read.cgi/math/1570237031/60
61: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:58:31.07 ID:JrhjRl4x >>54 追加 さて ・正則性公理では、「無限下降列である x∋x1∋x2∋・・・ は存在しない」と規定するが ・順序数では、「順序数からなる空でない集合には必ず最小元が存在する」 一方 「0, 1, 2, 3, ............, ω」 「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 (ここでノイマン構成では 0∈1∈2∈ 3∈ ............∈ω となる順序が形成されている) となる ・二つを比較すると、 正則性公理の無限下降列には、最小元が存在しない 順序数の無限下降列には、最小元が存在する という違いがある これ、大きなポイントでしょうね(^^ ・あとは、これをどう解釈するのかだけです 1)順序数の無限下降列には、最小元が存在するから、もともと、正則性公理には反していない 2)無限列が、極限順序数ωなどを跨ぐ場合は、除外(ωは集積点ですから、跨げば必ず無限列を成す) 3)クラスの違いで考える。有限順序数の集合の属するクラスと、ωの集合の属するクラスとでは クラスが別で、クラスを跨ぐ数列には、正則性公理は適用できないと考える(∵ 元々ZFCは、クラスを扱えない) この1)〜3)のどれか(あるいは全て) こんなところじゃないでしょうか (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) 以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。 ・任意の空でない集合xに対して、∃y∈x,x∩y=0 ・∀xについて、∈がx上well-founded ・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/61
62: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 15:58:51.75 ID:JrhjRl4x >>61 つづき https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 順序数の大小関係に関して次が成り立つ: 5.順序数からなる空でない集合には必ず最小元が存在する。 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/62
63: 132人目の素数さん [sage] 2019/10/05(土) 15:58:52.59 ID:kZwmbLNI >>56 >可算無限集合Nの存在性の保証はペアノの公理で済む。 これ、誤りですね 自然数全体の集合は可算無限集合ですから そしてまさにその集合の存在を認めるのが無限公理 ペアノの公理は、集合論の公理ではなく自然数論の公理です つまり自然数論では対象は自然数しかないのですが それを規定するのがペアノの公理です http://rio2016.5ch.net/test/read.cgi/math/1570237031/63
64: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:00:20.83 ID:JrhjRl4x >>56 おっちゃん、どうも、スレ主です。 ようこそ お元気そうでなによりです http://rio2016.5ch.net/test/read.cgi/math/1570237031/64
65: 132人目の素数さん [sage] 2019/10/05(土) 16:02:16.62 ID:kZwmbLNI >>61 >一方 >「0, 1, 2, 3, ............, ω」 >「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」 >(ここでノイマン構成では >0∈1∈2∈ 3∈ ............∈ω となる順序が形成されている) >となる これ、嘘ですね 何度も書いてますが 0∈1∈2∈ 3∈ ............∈ω では、「∈ω」の左側の要素が…のままで明記されません したがって∈列ではありません 順序数の順序の列と∈列は異なります この事実をまず理解しましょう http://rio2016.5ch.net/test/read.cgi/math/1570237031/65
66: 132人目の素数さん [sage] 2019/10/05(土) 16:06:39.30 ID:kZwmbLNI >>61 > 正則性公理の無限下降列には、最小元が存在しない > 順序数の無限下降列には、最小元が存在する あなたのいう「順序数の無限下降列」が 0∈1∈2∈ 3∈ ............∈ω のことなら、そもそも無限下降列ではないので嘘です 通常であれば「誤り」というところですが、 あなたが私の文章を一切読まず(読んでも理解せず)に 執拗に書き込みつづけるのであえて「嘘」といわせていただきました はっきりいって非常に悪質と言わざるを得ません 迷惑です >これ、大きなポイントでしょうね 実に初歩的でつまらない誤りですよ だからこのような誤りに固執して書き込みするのは迷惑です http://rio2016.5ch.net/test/read.cgi/math/1570237031/66
67: 132人目の素数さん [sage] 2019/10/05(土) 16:08:23.26 ID:o3FGv8uB >>63 >ペアノの公理は、集合論の公理ではなく自然数論の公理です テキストに書いてあると思うが、ペアノの公理は素朴集合論の公理だろ? ペアノの公理で可算無限集合Nは構成出来る。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/67
68: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:09:27.35 ID:JrhjRl4x >>57 >>60 あなたが必死に否定しようとしている 無限に関する {・・・{Φ}・・・}({}はω重) なる集合の存在に対する論法 まるで、哀れな素人さんの論法そっくりですよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/68
69: 132人目の素数さん [sage] 2019/10/05(土) 16:14:37.61 ID:kZwmbLNI >>61 >1)順序数の無限下降列には、最小元が存在するから、 > もともと、正則性公理には反していない そもそもあなたのいう 0∈1∈2∈ 3∈ ............∈ω は「∈ω」の左側の元を記載した瞬間、 有限列になるので、無限下降列にはなりません。 最小元の存在とかいう以前の問題 >2)無限列が、極限順序数ωなどを跨ぐ場合は、除外 > (ωは集積点ですから、跨げば必ず無限列を成す) いかなる超限順序数であろうと、降下列は有限です 極限順序数の場合は、すぐ下の順序数がないので飛びます つまりωの下は、自然数nになります >3)クラスの違いで考える。 > 有限順序数の集合の属するクラスと、 > ωの集合の属するクラスとではクラスが別で、 > クラスを跨ぐ数列には、正則性公理は適用できないと考える 順序数が理解できてませんね 順序数の全体はクラスですが、 有限順序数の全体はωという集合です また、例えばたかだか可算無限順序数の全体の集合はアレフ1です そして、前にも述べたように、いかなる無限順序数でも降下列の長さは有限です 超限帰納法が意味を持つのは、降下列の長さが有限だからです http://rio2016.5ch.net/test/read.cgi/math/1570237031/69
70: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:20:03.67 ID:JrhjRl4x >>65 >順序数の順序の列と∈列は異なります ノイマン構成では、順序数の順序の列と∈列は一致するのでは?(^^ 下記より ”集合 x について以下はZFで同値である。 ・x は順序数である。 ・x は推移的集合であり帰属関係 ∈ に関する整列集合である。 (ジョン・フォン・ノイマンの定義)[3][4]” とありますよ 一方、ツェルメロ構成では、一致しない。そこは批判されています(^^ (参考) https://ja.wikipedia.org/wiki/順序数 順序数 定義 整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって GA,< の値域 ran(GA,<) を (A, <) の順序数といい、これを ord(A, <) で表す。ある整列集合の順序数であるような集合を順序数と呼ぶ[2]。 順序数の特徴付け 集合 x について以下はZFで同値である。 ・x は順序数である。 ・x は推移的集合であり帰属関係 ∈ に関する整列集合である。 (ジョン・フォン・ノイマンの定義)[3][4] 注釈 2.^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。 その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。 ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。 これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。 だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。 ただし、整列集合の順序型と順序数は別のものになる。 詳細は「順序型」を参照。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/70
71: 132人目の素数さん [sage] 2019/10/05(土) 16:22:56.52 ID:kZwmbLNI >>68 HN「哀れな素人」氏の主張の全てが 誤っているわけではありませんよ 彼の主張で誤っているところがあるとすれば、それは 「無限集合が存在するならば矛盾する」という点でしょうか (矛盾しない、と断言できるわけではないが、 少なくとも矛盾の証明がないのに矛盾するというのは誤り) 一方、自然数を列挙する行為で、 「最後の自然数を書いて完結する」 のはあり得ない、というのは正しいです 完結するのに最後の自然数が必要、 という点は誤っていますが (完結する、とは集合として扱えるという意味) 一方、あなたは 「いや、自然数を列挙する行為も 最後の自然数を書いて完結する。 最後の自然数はωだ。」 と言いたいようですが、全くの誤りです 無限集合を正当化するのに、こんな酷い嘘をつく必要はありません http://rio2016.5ch.net/test/read.cgi/math/1570237031/71
72: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:23:30.90 ID:JrhjRl4x 分出公理、冪集合公理、無限公理、貼っておきます(^^ https://ja.wikipedia.org/wiki/%E5%85%AC%E7%90%86%E7%9A%84%E9%9B%86%E5%90%88%E8%AB%96 公理的集合論 (抜粋) 分出公理 置換公理はフレンケルによって次の分出公理の代わりにおかれたものである(1922年)。分出公理は上に述べた ZF の公理から示すことができる。 分出公理 任意の集合 X と A を自由変数として使用しない論理式 ψ(x) に対して、X の要素 x で ψ(x) をみたすような x 全体の集合が存在する: ∀X∃A∀x(x∈A←→(x∈X∧ψ(x)))。 この公理は、論理式 ψ をパラメータとする公理図式である。 論理式 ψ を決めたとき、X に対して分出公理が存在を主張する集合はただ一つであることが外延性の公理から言えるので、 これを {x∈X|ψ(x)}で表す。 {x∈X|x∈Y} を X∩Yで表す。 https://ja.wikipedia.org/wiki/%E5%86%AA%E9%9B%86%E5%90%88%E5%85%AC%E7%90%86 冪集合公理 (抜粋) 略 A の冪集合 P(A) この公理を通常の言葉で言い直すと、次のようになる: 任意の集合 A が与えられたとき、任意の集合 B が P(A) に属するようなある集合 P(A) が存在するための必要十分条件は、B のすべての元が A の元でもあることである。 部分集合関係は公理的に定義されるため、形式言語において部分集合は用いられない。*) 外延性公理により、上記の集合は一意であり、このことはすべての集合に冪集合が存在することを意味する。 冪集合公理は集合論のほとんどの公理化において現れる。それは一般に問題を生じさせるものではないが、構成的集合論(英語版)においては可術性(predicativity)に関する懸念を解消するためにより弱いバージョンの冪集合公理が好まれている。 (引用終り) 注:*)ここ直訳ぽいけど、要するに、冪集合公理の記述には、”部分集合”という用語は使わないってことです つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/72
73: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:23:59.58 ID:JrhjRl4x >>72 つづき https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 (抜粋) 定義 ZF公理系における公式な定義は次の通りである。 空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する: 解釈と帰結 上記定義では「無限」という言葉は用いられていないが、この公理によって(少なくとも1つの)無限集合の存在が保証されることになる。 まず定義中の集合 A(注:無限集合) は以下の性質を満たすことを確認できる。 (以下同様に繰り返す) 各手続きで得られた集合を要素とする集合を B:={Φ,{Φ},{Φ,{Φ}},・・・} とおくと、 B は A の部分集合である。 この手続きは何回でも繰り返すことができるが、もし有限回で終えた場合、 B は有限集合であり、 A≠Bである。 なぜならば定義により B∪{B}∈A であるが、B∪{B} not∈B となるからである。 一方 A が有限集合であれば、この手続きを繰り返すことで B が A よりも多くの要素をもつことができてしまう。 従って A は有限集合ではない(すなわち無限集合である)ため、 無限公理を採用すれば直ちに無限集合の存在を認めることになる。 上記の手続きはペアノの公理における自然数の構成方法と同様である。 ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/73
74: 132人目の素数さん [sage] 2019/10/05(土) 16:25:52.57 ID:kZwmbLNI >>70 >ノイマン構成では、順序数の順序の列と∈列は一致するのでは? ωについていえば、一致しません n∈ω (nは自然数)しかいえませんから あなたの主張は整礎性の否定であり、超限帰納法の否定です つまり集合論の根幹を全面的に否定する暴挙です http://rio2016.5ch.net/test/read.cgi/math/1570237031/74
75: ID:1lEWVa2s [sage] 2019/10/05(土) 16:26:46.74 ID:ldsFcLYg この話すると怖いから http://rio2016.5ch.net/test/read.cgi/math/1570237031/75
76: 132人目の素数さん [sage] 2019/10/05(土) 16:31:47.49 ID:kZwmbLNI >>70 >一方、ツェルメロ構成では、(順序数の順序の列と∈列は)一致しない。 すでに、>>74にてノイマン構成でも、ωで一致しないと述べたので 不一致が問題ということではありません 問題は 「無限公理のωでは、n∈ωはいえるが あなたのいうΩでは、n∈Ωがいえない」 という点です もしかしてあなたは {{{}}}の要素は{{}}だけでなく{}もそうだ と思ってますか? もしそうならそれは全くの誤りです {}と{{}}を要素とする集合は {{}、{{}}}であって{{{}}}ではありません http://rio2016.5ch.net/test/read.cgi/math/1570237031/76
77: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 16:57:31.71 ID:JrhjRl4x >>49 (引用開始) >つまり、ノイマン構成とツェルメロ構成とは、一対一に対応していますよ。当たり前ですが 自然数の範囲では一対一に対応しますが、 Nに対する{・・・{Φ}・・・}は存在しません (引用終り) あなたのやろうとしていること、そもそも無理ゲーですよ 1)現代数学は、無限と無限操作を許容している(下記 フォン・ノイマン宇宙ご参照 ) 2)0に冪集合の演算を超限回繰り返して得られる集合を許容している (無限の演算とか無限の操作を許容するのは現代数学では当たり前。それで矛盾が起きないようにってことが重要) 3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ集合を作ることができる(>>14に示しました) 4)だから、空集合Φに冪集合の演算を超限回繰り返して得られる集合 {・・・{Φ}・・・}({}が無限重になっている集合)は存在します それ、フォン・ノイマン宇宙の説明に書いてある通り 5)正則性公理に反するという主張は、不成立。 そもそも、正則性公理は最小元の存在を規定するものであって、無限上昇列を禁ずるものでない。 (無限上昇列を禁じたら、現代数学にならんぞ) その代表例が、ノイマンの自然数構成で、逆に辿れば、ωから0(=Φ)に至る降下列 これが、正則性公理に反するなどありえんよ 理屈は、ツェルメロ構成に同じだよ 6)空集合Φに冪集合の演算を超限回繰り返して得られる集合 {・・・{Φ}・・・}({}が無限重になっている集合) を否定するなんて、 それ、無理ゲーですよ (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) V=WF ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/77
78: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 17:20:19.32 ID:JrhjRl4x >>77 補足 ”アレフ0 = ω は自然数全体の濃度であり、選択公理の下で最小の無限基数である.” なんですよね そして、アレフ0が、可算無限集合 自然数の濃度なんですよね https://konn-san.com/math/freshman-2016-resume.pdf 集合論への招待* 〜実数直線の集合論〜 石井大海 Saturday 4th June, 2016 P2 実は,集合の宇宙はこの順序数に沿ってボトムアップに構成されている,ということがわかります*2): *2) これは実際には von Neumann による基礎の公理のお陰で証明出来るので,Cantor らの頃の公理化されていない集合論の定理で はありません.しかし,こうした生成的な集合観は基礎の公理が提案される以前から集合論者の脳裡にあったものです. P3 ? アレフ0 = ω は自然数全体の濃度であり、選択公理の下で最小の無限基数である. http://rio2016.5ch.net/test/read.cgi/math/1570237031/78
79: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 17:26:11.23 ID:JrhjRl4x >>78 追加 ”・N の順序型を ω で表す.最小の無限順序数で,N そのものと同一視できる.” だな 自然数ノイマン構成 Φ=0∈1∈2∈3・・・∈n・・・∈N(=有限の自然数の全てを含む最小の集合)=ω(最小の極限順序数として) ですよね (参考) https://konn-san.com/math/freshman-2016-resume.pdf 集合論への招待* 〜実数直線の集合論〜 石井大海 Saturday 4th June, 2016 P2 ・N の順序型を ω で表す.最小の無限順序数で,N そのものと同一視できる. http://rio2016.5ch.net/test/read.cgi/math/1570237031/79
80: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 17:27:22.62 ID:JrhjRl4x >>79 追加 列 Φ=0∈1∈2∈3・・・∈n・・・∈N の長さが有限? あなた なんとかの素人さんですか? http://rio2016.5ch.net/test/read.cgi/math/1570237031/80
81: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 17:29:46.51 ID:JrhjRl4x >>77 タイポ訂正 3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ集合を作ることができる(>>14に示しました) ↓ 3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ増やした集合を作ることができる(>>14に示しました) http://rio2016.5ch.net/test/read.cgi/math/1570237031/81
82: 132人目の素数さん [sage] 2019/10/05(土) 17:32:11.51 ID:o3FGv8uB それじゃ、おっちゃんもう寝る。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/82
83: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 18:24:09.06 ID:JrhjRl4x >>14 (引用開始) 冪集合で P({a})={Φ,{a}} つまり、 P({a})は{a}という一元集合の冪集合です ここで、{Φ,{a}}から、{{a}}という集合を作ることができるということを認めることにしましょう (注:{Φ,{a}}から、元Φを取り除くだけですけど(多分、分出公理を使う) あるいは、 P({Φ,{a}})={Φ,{Φ},{{a}},{Φ,{a}}}としても、{{a}}は作ることができる ) (引用終り) 上記より、空集合の冪集合を繰返して順に集合を作り、{}の多重になった集合を作る 1回P(Φ)={Φ}→{Φ}(1重) 2回P({Φ})={Φ,{Φ}}→{{Φ}}(2重) 3回P({{Φ}})={Φ,{{Φ}}}→{{{Φ}}}(3重) ・ ・ n回P({・・{Φ}・・})={Φ,{・・{Φ}・・}}→{{・・{Φ}・・}}(n重集合) (ここに、{・・{Φ}・・}は、{}のn-1重集合) フォン・ノイマン宇宙の「0に冪集合の演算を超限回繰り返して得られる集合」を認める 空集合Φに、ω回冪集合の演算を繰り返した集合として、ω重集合 ω回P({・・・{Φ}・・・})={Φ,{・・・{Φ}・・・}}→{{・・・{Φ}・・・}}(ω重集合) ”{{・・・{Φ}・・・}}(ω重集合)”を定義します この集合の性質は、超限順序数ωの性質を引き継ぐものとします つまり Φ=0∈1∈2∈3・・・∈n・・・∈ω=N で、この∈関係は、ノイマン構成と違って、集合演算としては推移的ではない 但し、単なる順序としての∈関係では、推移的です(順序の逆転はない) これが、”{{・・・{Φ}・・・}}(ω重集合)”の定義です(^^ この話は、>>70の下記と符合していますね つまり、「順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる」ということです つづく http://rio2016.5ch.net/test/read.cgi/math/1570237031/83
84: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 18:24:33.56 ID:JrhjRl4x >>83 つづき https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 注釈 2.^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。 その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。 ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。 これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。 だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。 ただし、整列集合の順序型と順序数は別のものになる。 詳細は「順序型」を参照。 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/84
85: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 18:25:29.16 ID:JrhjRl4x >>82 おっちゃん、どうも、ガロアスレのスレ主です。 おっちゃん、おやすみ(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/85
86: 132人目の素数さん [sage] 2019/10/05(土) 18:35:04.19 ID:o3KPqddg >>83 まだダメ。 wikiの下の方にちゃんと ‘冪集合をとる操作を超限的に繰り返したもの’ を数学的にどう定義するか述べられてるでしょ? それと同じ事をやらなけりゃダメ。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/86
87: 132人目の素数さん [sage] 2019/10/05(土) 19:11:07.76 ID:kZwmbLNI >>77 >空集合Φに冪集合の演算を超限回繰り返して得られる」 >集合 {・・・{Φ}・・・}({}が無限重になっている集合) >は存在します 嘘をいくら書かれても真実にはなりませんね 証明できますか?できませんよ http://rio2016.5ch.net/test/read.cgi/math/1570237031/87
88: 132人目の素数さん [sage] 2019/10/05(土) 19:13:30.11 ID:kZwmbLNI >>80 >列 >Φ=0∈1∈2∈3・・・∈n・・・∈N >の長さが有限? ええ あなたがいつまでも「・・・∈N」と∈の左側を書かないから 自分の誤りに気づけないのです なぜいわれたことをやらないのですか? 必ずやりましょう それが数学です http://rio2016.5ch.net/test/read.cgi/math/1570237031/88
89: 132人目の素数さん [sage] 2019/10/05(土) 19:20:17.29 ID:kZwmbLNI >>83 >フォン・ノイマン宇宙の >「0に冪集合の演算を超限回繰り返して得られる集合」 >を認める >空集合Φに、ω回冪集合の演算を繰り返した集合として、ω重集合 >ω回P({・・・{Φ}・・・})={Φ,{・・・{Φ}・・・}}→{{・・・{Φ}・・・}}(ω重集合) >”{{・・・{Φ}・・・}}(ω重集合)”を定義します 「ω回」が誤りですね >>36で書きましたよ 必ず読みましょう フォン・ノイマン宇宙 https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%B3%E3%83%BB%E3%83%8E%E3%82%A4%E3%83%9E%E3%83%B3%E5%AE%87%E5%AE%99 「・V0は空集合, {}とする。 ・各順序数 βに対して、Vβ+1はVβの冪集合とする。 ・各極限順序数 λに対して、Vλは、次の和集合とする: Vλ=∪(β<λ)Vβ」 ωは極限順序数ですから Vω=∪(n<ω)Vn です 勝手に「ω回」とか嘘八百をでっちあげるのは 迷惑だから絶対にやめてください http://rio2016.5ch.net/test/read.cgi/math/1570237031/89
90: 132人目の素数さん [sage] 2019/10/05(土) 19:22:38.29 ID:kZwmbLNI >>86 ◆e.a0E5TtKE氏は wikiのフォンノイマン宇宙の記述を読まずに フォンノイマン宇宙に関する嘘をつき続けるとか 知的誠実さに著しく欠けていると言わざるを得ませんね http://rio2016.5ch.net/test/read.cgi/math/1570237031/90
91: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 21:31:10.08 ID:JrhjRl4x >>77 ツェルメロ構成 批判はされているけれど(^^ https://plato.stanford.edu/entries/zermelo-set-theory/ Stanford Encyclopedia of Philosophy Zermelo’s Axiomatization of Set Theory First published Tue Jul 2, 2013 (抜粋) 3.2.1 Representing Ordinary Mathematics The first obvious question concerns the representation of the ordinary number systems. The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these. Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc. What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.? And assuming that one could define the real numbers, how does one characterise the field operations on them? In addition, as mentioned previously, Zermelo has no natural way of representing either the general notions of relation or of function. This means that his presentation of set theory has no natural way of representing those parts of mathematics (like real analysis) in which the general notion of function plays a fundamental part. 3.2.2 Ordinality Zermelo's idea (1908a) was pursued by Kuratowski in the 1920s, thereby generalising and systematising work, not just of Zermelo, but of Hessenberg and Hausdorff too, giving a simple set of necessary and sufficient conditions for a subset ordering to represent a linear ordering. He also argues forcefully that it is in fact undesirable for set theory to go beyond this and present a general theory of ordinal numbers: (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1570237031/91
92: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 21:35:51.26 ID:JrhjRl4x >>91 補足 ”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these. Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc. What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?” ツェルメロ自然数構成 批判はされているけれど(^^ ・by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these ・since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc. ・何が不足なの? What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.? まあ、ツェルメロ自然数構成から、無限集合が出来て、自然数とその冪集合から、有理数や実数や実関数などはできる でも、批判はあった。それは、基礎論パイオニアの宿命でもあったかもしれない(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/92
93: 132人目の素数さん [] 2019/10/05(土) 21:40:30.03 ID:bWNxCkT0 白痴くんに質問 {{…{}…}}({}が無限重) の最初に現れる}は(左から)何文字目ですか? http://rio2016.5ch.net/test/read.cgi/math/1570237031/93
94: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 21:44:03.00 ID:JrhjRl4x >>92 補足 ”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.” これで、無限集合ができるなら、{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ それがなければ、有限集合にしかならんわな だから、くどいけど、Stanford大 URL見ると Michael Hallett さんて方らしいが、ツェルメロ構成で実数まで到達できると言っているんだから {・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/94
95: 132人目の素数さん [sage] 2019/10/05(土) 21:51:10.51 ID:kZwmbLNI >>91-92 英語読めませんか? Infinity This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….) つまり>>29で述べたω’(={{},{{}},{{{}}},…}) ∃ω’.{}∈ω’∧(∀x.x∈ω’⇒{x}∈ω’) だといってます 決して{・・・{Φ}・・・}ではありません http://rio2016.5ch.net/test/read.cgi/math/1570237031/95
96: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 21:53:33.52 ID:JrhjRl4x >>93 無限集合って定義というか公理なんだからさ、そういう質問は関係ないよね(^^ それ、同じ質問、ノイマン構成でも同じ質問できるよね? ノイマン構成で無限集合ができました それで小さい元を左に大きい元を右に並べて、一番右の数字は何か?答えられないならなに? ノイマン構成の無限集合が存在できないとでも? (^^; http://rio2016.5ch.net/test/read.cgi/math/1570237031/96
97: 132人目の素数さん [sage] 2019/10/05(土) 21:56:21.51 ID:kZwmbLNI ついでにいうと{{},{{}},{{{}}},…}の 左から順に元を削除していって、 最後の1個を残す、というやり方で {・・・{Φ}・・・}を作ることはできません なぜなら最後の1個が存在しないからです http://rio2016.5ch.net/test/read.cgi/math/1570237031/97
98: 132人目の素数さん [sage] 2019/10/05(土) 21:58:40.23 ID:kZwmbLNI >>96 >小さい元を左に大きい元を右に並べて、一番右の数字は何か?答えられないならなに? >ノイマン構成の無限集合が存在できないとでも? 一番右の要素が存在しなくても集合として存在します http://rio2016.5ch.net/test/read.cgi/math/1570237031/98
99: 132人目の素数さん [sage] 2019/10/05(土) 22:01:01.97 ID:kZwmbLNI 集合について要素の数を「横方向」、{}の深さを「縦方向」と呼ぶことにすると 横方向は可算無限だろうが、非可算無限だろうが、いくらでも広がりますが 縦方向は必ず有限です http://rio2016.5ch.net/test/read.cgi/math/1570237031/99
100: 132人目の素数さん [sage] 2019/10/05(土) 22:01:40.77 ID:o3KPqddg ヨコです。 >>92の英文の読みは>>94さんが正解ですね。 Zermeloの構成で可算無限集合ができると言ってる無限集合は{0,1,2,3,‥}であってこのスレのΩが構成できるという意味ではありません。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/100
101: 132人目の素数さん [sage] 2019/10/05(土) 22:03:31.08 ID:o3KPqddg あ、間違った>>94でなく>>95です。 兎にも角にもΩの定義をキチンと与えないとダメです。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/101
102: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 22:18:51.82 ID:JrhjRl4x >>95 ありがとう ええ、確かにそうです ですが、その英文の記述は {・・・{Φ}・・・}なる無限多重カッコ{}の集合を否定するものではないですよね ツェルメロの自然数構成で、後者関数はあくまで、aに対して{a}ですからね (下記の(a)と(b) とですね) 私は、N={Φ, {Φ}, {{Φ}}, …}は、自然数の集合として、決して否定するものではありませんよ (追加引用) https://plato.stanford.edu/entries/zermelo-set-theory/ Stanford Encyclopedia of Philosophy Zermelo’s Axiomatization of Set Theory Michael Hallett First published Tue Jul 2, 2013 (抜粋) II.Axiom of Elementary Sets This asserts (a) the existence of a set which contains no members (denoted ‘0’ by Zermelo, now commonly denoted by ‘Φ’); (b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and (c) the existence, for any two objects a, b, of the unordered pair {a, b}, which has just a, b as its members. http://rio2016.5ch.net/test/read.cgi/math/1570237031/102
103: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 22:25:40.62 ID:JrhjRl4x >>99 >縦方向は必ず有限です 証明は? 正則性公理に反するですか? http://rio2016.5ch.net/test/read.cgi/math/1570237031/103
104: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/05(土) 22:36:43.78 ID:JrhjRl4x >>98 >>ノイマン構成の無限集合が存在できないとでも? >一番右の要素が存在しなくても集合として存在します そういう禅問答なら タマネギからっきょの皮むきですね 一皮むいても、その下にはまた皮があるよと(^^ http://rio2016.5ch.net/test/read.cgi/math/1570237031/104
105: 132人目の素数さん [sage] 2019/10/05(土) 22:47:37.84 ID:yY/gQRZe >>104 > 禅問答 別に禅問答でなくてね {a}はaを要素に持つ集合 {0, 1, 2, ... }は(有限個でない)有限集合を要素に持つ集合 > {・・・{Φ}・・・} これが集合ならばその要素は何?という話です (あんたは決して答えないが) http://rio2016.5ch.net/test/read.cgi/math/1570237031/105
106: 132人目の素数さん [sage] 2019/10/05(土) 22:56:00.53 ID:yY/gQRZe >>33 > 「順序数は…」はどういう意味? > {・・・{Φ}・・・}なる無限多重カッコ{}の集合 順序数ω={?}で?(集合の要素)が何かという問いに対して ω = {ある1つの有限集合}であればその順序数は有限であり ω = {ある1つの無限集合}であればその順序数はω+1以上となる http://rio2016.5ch.net/test/read.cgi/math/1570237031/106
107: 132人目の素数さん [sage] 2019/10/05(土) 23:07:40.39 ID:kZwmbLNI >>106 >ω = {ある1つの有限集合}であればその順序数は有限であり >ω = {ある1つの無限集合}であればその順序数はω+1以上となる その説明では全然分からないが もしかして上記の集合がフォンノイマン宇宙Vαで初めて現れるとして その順序数αのこと? http://rio2016.5ch.net/test/read.cgi/math/1570237031/107
108: 132人目の素数さん [sage] 2019/10/05(土) 23:09:45.56 ID:kZwmbLNI >>107 ついでにいうと{ある1つの有限集合}というだけでは Vn(nは自然数)で現れる、とはいえない 遺伝的有限集合である必要がある http://rio2016.5ch.net/test/read.cgi/math/1570237031/108
109: 132人目の素数さん [sage] 2019/10/05(土) 23:44:42.17 ID:ob9cJrJf 数学板「現代数学の系譜」シリーズも原著者が嘆くようなスレ2本かww http://rio2016.5ch.net/test/read.cgi/math/1570237031/109
110: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 07:57:27.47 ID:d8OQiN+r >>95 追加 >Infinity >This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. > (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….) で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki) それを、最小の無限集合に絞って小さくする操作が必要です 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる なので、無限公理でできた最小に絞る前の無限集合には、 自然数を表現する以上の つまり、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合が 含まれていることは 明白ですね QED (参考) https://en.wikipedia.org/wiki/Axiom_of_infinity Axiom of infinity (抜粋) In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo?Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.[1] Thus the essence of the axiom is: There is a set, I, that includes all the natural numbers. Extracting the natural numbers from the infinite set The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality. http://rio2016.5ch.net/test/read.cgi/math/1570237031/110
111: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 08:00:15.16 ID:d8OQiN+r >>105 >>110をどうぞ http://rio2016.5ch.net/test/read.cgi/math/1570237031/111
112: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/06(日) 08:39:19.54 ID:d8OQiN+r >>77 追加 下記、定理 93ですけど、ここに集積点を含まないことは明白ですね(^^ http://www.math.tsukuba.ac.jp/~tsuboi/ 坪井明人 筑波大 http://math.tsukuba.ac.jp/~tsuboi/und/set2.pdf 坪井明人 11 整列集合 定義 88(整列順序)順序集合 (X, <) が整列集合(あ るいは整列順序集合)であるとは,空でない任意の A ⊂ X の中に(A の)最小元が存在することである. 注意 89 整列集合は全順序集合である.全順序集合 であることは,2元集合 A = {x, y} に必ず最小元が 存在することからわかる. 例 90 1. (N, <) は整列集合である. 2. (Z, <) は(全順序集合であるが)整列集合でない. 3. 有限の全順序集合は整列集合になる. 関数 f : N → X は X の元からなる無限列と考えられる. 無限列は (an)n∈N などで表す. 定義 91 (X, <) を順序集合とする.X の元の無限列 (an)n∈N が無限降下列であるとは,任意の n ∈ N に対して, an+1 < an が成立することである. 例 92 1. Z における数列 (an)n∈N を an = ?n で定めると,無限降下列である. 2. N の中には無限降下列は存在しない. 定理 93 (X, <) を順序集合とする.このとき次は同値である: 1. (X, <) は整列集合である; 2. (X, <) は全順序集合で,なおかつ無限降下列を持たない. 証明: 1 ⇒ 2: (X, <) を整列集合とする.全順序 集合になることは既に調べた.X の中に無限降下 列 (an)n∈N が存在したとしよう.このとき,集合 A = {an : n ∈ N} ⊂ X は最小元を持たない.これ は X が整列集合であることに反する. 2 ⇒ 1: 2 を仮定する.空でない A ⊂ X を任意に とる.A に最小元が存在することを示そう.a0 ∈ A を選ぶ.これが A の最小元ならば議論は終了する. そうでなければ,a1 ∈ A, a1 < a0 が存在する.a1 が最小元ならば議論は終了するので,再び a2 ∈ A, a2 < a1 が存在する.以下同様に A の元 an を a0 > a1 > a2 > ・ ・ ・ an?1 > an となるように選ぶ.A は無限降下列を持たないので, この構成はいつか止まる.すなわち,ある n に対し て an ∈ A が最小元になる. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/112
113: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 08:47:43.51 ID:zyaquwkF なんだ、この馬鹿、調子ぶっこいて、新スレ立ち上げやがったんだ 飛んで火にいる夏の虫 とはこのことだwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/113
114: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 08:57:10.46 ID:zyaquwkF >>110 >無限公理でできた最小に絞る前の無限集合には、 >真に無限の{・・・{Φ}・・・}なる >無限多重カッコ{}の集合が含まれていることは >明白ですね 馬鹿が勝手な妄想してやがるwww もとの文章でいってるのは、 無限公理だと{}を含むとかxを含めば{x}を含むとかいってるだけで 余計な元を含まないという記述がないから、追加の公理で 余計な元がないようにする、ってことだろ 無限公理で必ず”無限多重カッコ{}の集合”が入るなんていえないし そういう集合は、さんざん言われてるように正則性公理に反する 馬鹿が理解できないだけwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/114
115: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:04:29.32 ID:zyaquwkF >>112 集積点? 極限順序数のことか? そんなもん別にあってもかまわんぞ 極限順序数には直前の元はない 例えばωにはωー1なんてない つまりω>nとなる元は有限 だから ω>n>n−1・・・2>1>0 なる列は必ず有限長 こんな基本的なことも理解できない馬鹿が 超限帰納法とかほざいてたとか、噴飯ものwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/115
116: 哀れな素人 [] 2019/10/06(日) 09:08:03.00 ID:aAisPx0D ID:zyaquwkF このチンピラ臭丸出しの文章はサル石だろう(笑 サル石という名前が知られ始めたので 第六天魔王と名前を変えたのだろう(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/116
117: 哀れな素人 [] 2019/10/06(日) 09:11:13.57 ID:aAisPx0D このスレの読者よ、第六天魔王とは サル石という2ch有数の噛みつき魔である(笑 よく覚えておくように(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/117
118: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:23:00.54 ID:zyaquwkF >>116-117 なんだ、安達のジジイ、まだ生きてたのか? お前みたいな耄碌爺、相手にする時間がもったいない とはいえ、せっかくだからなぜ「第六天魔王」を名乗ったのか教えてやろう 第六天魔王というのは仏教でいうところの「仏道修行を妨げている魔」だな キリスト教でいうサタンみたいなもんだ というと、なんかここの馬鹿が釈迦みたいに聞こえるが もちろん、トンデモ野郎がそんな有難いもんじゃない 昔、武田信玄が織田信長への手紙で 「天台座主沙門信玄」 とか中二病丸出しな署名をしてきやがったので 信長が面白がって、返事に 「第六天魔王信長」 と署名したとか ここではそれを丸ごと頂いたまで パクリじゃないぞ オマージュってやつだwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/118
119: 哀れな素人 [] 2019/10/06(日) 09:29:02.76 ID:aAisPx0D ↑見ろ、このアホのチンピラ臭丸出しの文章(笑 これがサル石という男である(笑 相手かまわず誰にでも噛みつく(笑 在日同和の低学歴バカだから 他人に噛みつきたくて噛みつきたくてたまらない(笑 噛みつかないと気が済まない(笑 一種の精神病者(笑 このスレの読者よ、こいつは下記スレで何年間も スレ主に噛みついている男である。下記スレを見れば分る(笑 朝から真夜中まで一日中、毎日毎日何年間も噛みついている(笑 現代数学の系譜 工学物理雑談 古典ガロア理論も読む https://rio2016.5ch.net/test/read.cgi/math/1568026331/l50 http://rio2016.5ch.net/test/read.cgi/math/1570237031/119
120: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:33:04.88 ID:zyaquwkF >>119 >相手かまわず誰にでも噛みつく いや、安達、貴様には関わらんよ さすがの俺も、認知症のジジイをいたぶるほど、悪党じゃないwww http://rio2016.5ch.net/test/read.cgi/math/1570237031/120
121: 哀れな素人 [] 2019/10/06(日) 09:37:31.45 ID:aAisPx0D ↑こうしてアホのくせに虚勢を張る(笑 日大卒のくせにパリ高等師範学校卒とか 東大理学部数学科卒と自称していたアホである(笑 ついに噛みつき魔の本性を隠しきれなくなって、本性全開(笑 噛みつきたくて噛みつきたくてたまらない精神異常者である(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/121
122: 哀れな素人 [] 2019/10/06(日) 09:39:05.06 ID:aAisPx0D こいつがどれほど異常な男であるかというと、 たとえばこういう投稿をしている男だ。 牛は日本ではキャプティブボルト(屠畜銃)を眉間に打ち、 失神させ、片足を釣り上げて逆さ吊りにして、 喉を切り裂いて失血死させる。 失神は失敗することもあるし、 首を切られてから意識を取り戻すこともある。 これは豚も同じことだ。 首掻き切るか?なんならオレが斬ってやろうか これは単なる食肉加工 罪悪感?そんなもんないよ 失神させ、片足を釣り上げて逆さ吊りにして、 喉を切り裂いて失血死させる。 実際に人を真っ二つに斬れたら 爽快極まりないだろう http://rio2016.5ch.net/test/read.cgi/math/1570237031/122
123: 哀れな素人 [] 2019/10/06(日) 09:39:57.89 ID:aAisPx0D 二日間に渡って狂気の860連投をした男である(笑 学歴に異常な虚栄心というか劣等感を持っていて、 日大卒のくせにパリ高等師範学校卒とか 東大理学部数学科卒と自称していたアホである(笑 在日か同和で、アイヌでもないのにアイヌを自称して アイヌ特権で甘い汁を吸っている疑いがある。 50代前半だが働かずに毎日2chに貼り付いている(笑 いい年してベビーメタルの大ファンで、 乃木坂とかAKBグループのファンでもある(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/123
124: 哀れな素人 [] 2019/10/06(日) 09:42:02.70 ID:aAisPx0D サル石の好む語彙 サル、畜生、貴様、ナイーブ、idiot 肉、豚の丸焼き、サタン アイドル・ロック・ヘビメタ クロポトキン・アナーキスト・革命 ギャハハハハ!!! かっけぇぇぇぇぇ!!! ワロスwwwwwww っぷ これは酷い (^^; ちょっと何いってるのかわからないんですけど… キモチ悪い (をひ) 腐った爺頭 こういう語を使っていればサル石だ(笑 最初は、ばれないように、こういう語は使わなかったが、 もう開き直って本性全開(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/124
125: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:43:15.65 ID:zyaquwkF >>122 なに 怯えてるんだ、安達 安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな https://www.favy.jp/topics/20495 http://rio2016.5ch.net/test/read.cgi/math/1570237031/125
126: 哀れな素人 [] 2019/10/06(日) 09:47:58.58 ID:aAisPx0D >なに 怯えてるんだ、安達 アホのくせに虚勢を張る(笑 怯えているのはこいつなのに(笑 >安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない >ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな こういう文章にこの男の異常性が現れている(笑 人肉嗜食願望さえ抱いている異常者である(笑 嘘だと思うならガロアスレのこいつの過去レスを見れば分る(笑 http://rio2016.5ch.net/test/read.cgi/math/1570237031/126
127: 132人目の素数さん [sage] 2019/10/06(日) 09:49:14.34 ID:Gc2q5hFd >>110 > で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど > 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki) > > それを、最小の無限集合に絞って小さくする操作が必要です > 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる > そうです。 ωの存在を公理としても良いけど公理はなるべく簡潔である方が好まれるのでそのようにしています。 そうしないといけないわけではありませんが。 具体的には例えば ω' を 0∈ω' 、n∈ω' ⇒ n+1∈ω' を満たすものに取れる。(∵無限公理) ωを ω={x∈ω' | xは有限集合かつ順序数} と置くとωは自然数全体からなる集合となる。(∵分出公理) QED. のように証明できます。 ZFはBGより対象の範囲が狭く公理も弱いのでこのような構成になります。 BGなら>>18のようにもっと直接的に行けます。 (無限公理ももっと弱く取れる) もしΩの存在も示せるというなら示してください。 それ以前にまずΩを定義して下さい。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/127
128: 第六天魔王 ◆y7fKJ8VsjM [] 2019/10/06(日) 09:49:45.09 ID:zyaquwkF >>123 >いい年してベビーメタルの大ファンで、 安達、いいタイミングでいってくれたな 10/11にBABYMETALの3rd Album"Metal Galaxy"が出るぞ 聴きやがれw >乃木坂とかAKBグループのファンでもある 悪いが、そっちはそれほど興味ないwww 乃木坂はSU-METALの姉がいたからチェックしてただけ しかしどいつもこいつもカスばかり・・・ 但し生田絵梨花と久保史緒里は除くw BABYMETALに一番近いのは・・・ももクロかもな 少なくとも百田夏菜子のエビぞりジャンプは アイドル史に残る名パフォーマンス http://rio2016.5ch.net/test/read.cgi/math/1570237031/128
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 674 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s