[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
252: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/10/11(金) 06:50:20.34 ID:aKfhohl9 >>251 つづき 理論が範疇的 categorical であるとは、同型の違いを除いて唯一のモデルを持つことを意味する。 この用語は1904年、オズワルド・ヴェブレンが考案したもの[1]で、その後しばらくの間、数学者らは集合論を範疇的な一階の理論で記述することで、数学の堅固な基盤を築けると考えていた。 レーヴェンハイム-スコーレムの定理はこの希望への最初の打撃となった。 なぜなら、その定理によれば無限のモデルを持つ一階の理論は範疇的にはなり得ないからである。 さらに1931年、ゲーデルの不完全性定理によって希望は完全に打ち砕かれた。 レーヴェンハイム-スコーレムの定理から導かれる結論の多くは、一階とそうでないものの違いがはっきりしていなかった20世紀初頭の論理学者にとっては直観に反していた。 例えば、真の算術 (true arithmetic) には非可算なモデルがあり、それらは一階のペアノ算術を満足するが、同時に帰納的でない部分集合を持つ。 さらに悩ましかったのは、集合論の可算なモデルの存在である。 それにもかかわらず、集合論は実数が非可算であるという文を満たさなければならない。 この直観に反するような状況はスコーレムのパラドックスと呼ばれ、可算性 (countability) は絶対的 (absolute) ではないことを示している。 歴史 以下の記述は主に Dawson (1993) に基づいている。 モデル理論の初期の歴史を理解するには、統語論的整合性(一階論理の推論規則を使って導かれるものには矛盾がないこと)と充足可能性(satisfiability、モデルがあること)を区別しなければならない。 いくぶんか驚くべきことに、ゲーデルの完全性定理がこの区別を不要とする以前でさえも、整合性 (consistency) という用語は場合によって違う意味で使われていた。 「トアルフ・スコーレムは亡くなる直前まで、この定理に彼の名が冠せられていることに憤慨していたという。彼は非可算集合の存在そのものが不合理であるとし、実在しないと考えていた」 - Poizat (2000) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1570237031/252
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 750 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s