[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
328(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)00:48 ID:MSw7Rbq1(1/14) AAS
>>306
(引用開始)
その場合、個々の自然数を要素とすることはしませんよ
同値類から代表元をとって
{0,1}という別集合を考える
というのはありますがね
(引用終り)
省28
329(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)00:49 ID:MSw7Rbq1(2/14) AAS
>>328
つづき
(参考)
外部リンク:math.shinshu-u.ac.jp
代数入門 花木章秀 信州大学理学部数学科
外部リンク[pdf]:math.shinshu-u.ac.jp
代数学入門
省22
334: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:06 ID:MSw7Rbq1(3/14) AAS
>>328-329 訂正
(n ? 1)とかの?の文字化け、これ-です
つまり、(n - 1)です。そう読み替えて下さい
あるいは、もっと良いのは、原文PDFを見ることな(^^
念のため
して a ? b = nl となるとき a ≡ b (mod n) と書くことにする (問 1.2.1)。
↓
省5
335(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:40 ID:MSw7Rbq1(4/14) AAS
(引用開始)
>”同値類全体の集合は
>Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}”
>Z/nZは、明らかに有限集合ではない
完全な誤りw
Z/nZは、明らかに有限集合
(引用終り)
省27
336(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:41 ID:MSw7Rbq1(5/14) AAS
>>335
つづき
例をあげるなら、平面上の4点A, B, C, Dに対して、ABCDが平行四辺形となっている場合、[ベクトルAB]と[ベクトルDC]は等しいと定義され、[ベクトルAB]=[ベクトルDC]という等号で結ばれる。
しかし、よくよく考えると、ABのある場所とDCのある場所は異なっているのだから、どう見ても、これは異なるもののように思える。なのに、等号で結べるのはどうしてか、といえば、それは「同じと見なす」と定義をしているからに他ならない。
実は、こういうことは、それ以前にも知らず知らずのうちに何回も経験しているのだ。ただ、そう意識していないから、記憶に残らないだけなのである。
(引用終り)
(>>264より)
省3
337(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:51 ID:MSw7Rbq1(6/14) AAS
"∈による順序"について、分り易い説明を思いついたので書いてみるよ(^^
1)まず、>>310の追加補足
(おサル >>275より)
0={}
1={0}={{}}
2={1}={{{}}}
・・・
省31
338(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:52 ID:MSw7Rbq1(7/14) AAS
>>337
つづき
2)さて、下記のように考えてみよう
(参考)
外部リンク:www.sci.shizuoka.ac.jp 数学基礎論サマースクール 選択公理と連続体仮説
外部リンク[pdf]:www.sci.shizuoka.ac.jp
公理的集合論の基礎 酒井 拓史 神戸大学 2019 年 数学基礎論サマースクール
省31
339(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:55 ID:MSw7Rbq1(8/14) AAS
>>338
つづき
3)こう考えると、上記のwikipediaの単純な自然数構成でも
∈Rを使って
0 = {} ∈R {{}} ∈R {{{}}} ∈R {{{{}}}} = 3
と、二項関係∈Rで、綺麗な順序が構成できる
こうして構成した二項関係∈Rには、モストフスキ崩壊補題により
省16
340: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)08:02 ID:MSw7Rbq1(9/14) AAS
>>338 蛇足だが
(引用開始)
3)∈と二項関係の”∈R”との違いについて説明すると、
∈は公理的集合論の集合を構成するカナメの記号だが
”∈R”は、出来上がった集合の二項関係を示すためだけの機能に限定するものとする(集合を構成する力はない)
(引用終り)
公理的集合論の集合を構成するカナメの記号∈が、強力すぎる機能を持たせると
省4
346(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)21:19 ID:MSw7Rbq1(10/14) AAS
おサルさん、踊ってくれてありがとう
お陰で、このガロアスレの勢い2位で 34です (^^
(参考)
外部リンク[html]:49.212.78.147
数学:2ch勢いランキング 9月19日 21:10:27
順位 6H前比 スレッドタイトル レス数 勢い
1位 ↑1 【未解決問題】奇数の完全数が存在しないことの証明5 195 39
省13
350(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:15 ID:MSw7Rbq1(11/14) AAS
>>335 訂正と追加
<訂正>
Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZを忘れたらZに戻るってこと
(Z/nZの要素の例えば、0 + nZ={・・,-2n,-n,0,n,2n,・・}の元からZ中の例えば2nに対応を付ければ良い)
↓
Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZの同値類の構造を忘れたらZに戻るってこと
(Z/nZの要素の例えば、0 + nZ={・・,-2n,-n,0,n,2n,・・}の元2nからZ中の例えば2nに対応を付ければ良い)
省15
351: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:17 ID:MSw7Rbq1(12/14) AAS
>>350
つづき
忘却関手をイメージすると、Grp の対象である群の台集合をそのまま Set の対象とし、Grp の射である準同型写像をそのまま Set の射に写す。集合の圏では演算は定義されていないので f(xy) = f(x)f(y) という等式は意味がなくなってしまう。
つまり、忘却関手とは群の圏から演算を取り去ってしまって、そのまま集合の圏の部分圏に写しだしたものと考えると良い。忘却関手の像の射の集合は集合の圏の射の集合の部分集合になっている。
したがって、忘却関手のイメージとは、群の圏を、集合の圏の部分圏へ写す関手と考える事ができる。
一方自由群は集合から作る事ができる。集合の圏の対象である文字集合をその上の自由群に対応させ、文字集合間の写像を対応する自由群間の準同型写像に対応させる関手(自由関手)を考えると、これは忘却関手とは反対方向の Set -> Grp の関手になる。
自由関手は忘却関手の左随伴である。したがって、自由関手と忘却関手の関係が分かれば、随伴の実例のひとつを理解できることになる。
省12
353(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:56 ID:MSw7Rbq1(13/14) AAS
>>335
実数の部分集合として、次のようなものを考えよう
1)正の整数の集合Z+
2)負の整数の集合Z-
3)0 (これは元)
4)上記以外の有理数の集合Q’
5)超越数の集合Tr
省18
354: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:59 ID:MSw7Rbq1(14/14) AAS
>>352
哀れな素人さん、どうも。スレ主です。
>サル石がお前に毎日噛みついていることを
>スレ民に教えてやった(笑
>サル石がどういう男であるかも、すでに教えてある(笑
ありがとうございます
サル石は、キチガイサイコパスです(>>2ご参照)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.064s