[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
812: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:15 ID:w6tqRMw5(10/18) AAS
>>811
URLだけなら通るかな?(゜ロ゜;
外部リンク:sites.google.com
ガロアの第一論文を読む 渡部 一己 著(2018.1.28)
外部リンク[pdf]:sites.google.com
ガロア第一論文(galois-1.pdf)渡部 一己 著(2018.1.28)
813: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:16 ID:w6tqRMw5(11/18) AAS
よくわからんな、2ch(いま5ch)の規制はww(゜ロ゜;
814(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:25 ID:w6tqRMw5(12/18) AAS
>>810
青春の輝き
ドラマの主題歌になったと、ラジオで言っていたね
おれは、ドラマを見ないし、知らなかったけど
しかし、青春の輝きは、BGMとしてあちこちで聞くね
外部リンク:ja.wikipedia.org
青春の輝き
省16
815(2): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)16:51 ID:llLaGKvq(7/12) AAS
感傷に浸ってる耄碌爺に質問だw
1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
2. Kをn個の異なる1のn乗根を含む体とし
Lを、Kにaのn乗根の1つを追加した体とする
このときのガロア群G(L/K)は?
816: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:01 ID:w6tqRMw5(13/18) AAS
>>814
これも雑談だが
外部リンク:ja.wikipedia.org
未成年 (テレビドラマ)
(抜粋)
『未成年』(みせいねん)は、TBS系列の金曜ドラマ枠(毎週金曜日22:00 - 22:54、JST)で1995年10月13日から12月22日まで放送された日本のテレビドラマ。主演はいしだ壱成。
同年代の若者5人を中心に、青春の過程で起こる様々な苦悩と葛藤を生々しく描いたこの作品は、出演芸能人の出世作としても知られている。後年歌手として大ブレイクした浜崎あゆみの数少ない女優出演作のひとつでもある。全11回。
省3
817: Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)17:03 ID:llLaGKvq(8/12) AAS
感傷に浸ってる耄碌爺に質問だw
1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
2. Kをn個の異なる1のn乗根を含む体とし
Lを、Kにaのn乗根の1つを追加した体とする
このときのガロア群G(L/K)は?
818(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:41 ID:w6tqRMw5(14/18) AAS
>>815
めんどくさいやつだな
そうあせるな(^^
Q1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
A1. 面倒なのでn=p(素数)とするよ
(こう仮定してもガロア理論には十分だから)
省18
819(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:57 ID:w6tqRMw5(15/18) AAS
>>818
ガウス、アーベル、ガロアについては、下記の高瀬正仁先生ご参照
http(URLがNGなので、キーワードでググれ(^^ )
日々のつれづれ
(ガウス32)アーベル方程式とガロアの第一論文 Author:オイラー研究所の所長 高瀬正仁 2008-04-26
(抜粋)
代数的可解性を左右する根源的な要因は「諸根の相互依存関係」にあります。この認識はガロアもまた共有し、代数方程式の代数的可解性をテーマにした第一論文
省7
820: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:57 ID:w6tqRMw5(16/18) AAS
>>819
つづき
アーベルはガウスの理論の根幹をなす数学的思想の泉から直接、アーベル方程式の概念を取り出しましたが、ガロアはガロアでガウスの理論の「証明の構造」を学び、ガウスの理論をその雛形と見ることを可能にする大きな理論を構想したのでした。
ガロアの第一論文はガロアが書いた一番はじめの論文というわけではありませんが、「第一論文」と呼ぶ習わしになっています。
1832年5月30日早朝の決闘の前夜、友人オーギュスト・シュヴァリエに宛てた有名な遺書において、ガロアは冒頭で「(これまでの研究を元手にして)三篇の論文を作成することができると思う」と述べ、続いて各論文の素描を試みました。
「第一論文はもう書いた」と言われているが、これは上記の代数方程式論に関する論文を指しています。
ガロア理論により、素次数既約方程式の代数的可解性の判定条件が手に入ります。
省7
821(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)18:01 ID:llLaGKvq(9/12) AAS
>>818
ん、なんかおかしなこといってるね
>面倒なのでn=p(素数)とするよ
そんな仮定するほうが面倒だろw
>位数p-1の巡回群
巡回群だといいたいためにpの条件を持ち出したんなら馬鹿
省3
822(2): 2019/10/14(月)18:17 ID:yDLeEzQX(1/4) AAS
>>811
cos(2π/11)のガロア群は位数5の巡回群だけど?
823: Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)18:47 ID:llLaGKvq(10/12) AAS
>>822
馬鹿の1は、最大の可解群しか頭にない
その正規部分群の場合もあることを想定してない
相変わらずヌケサクwww
824(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)18:51 ID:llLaGKvq(11/12) AAS
>>818
じゃ>>815の続きだ
Qにaの5つの5乗根を添加した体をKとする
このときのガロア群G(K/Q)は?
825(2): 2019/10/14(月)19:03 ID:yDLeEzQX(2/4) AAS
どんな文章をどう引用したのかわからんけど、Qに1の冪根全部加えた体を考えてその上の5次拡大に話を限定した時のQ上のGalois群とかなのかもしれん。
方程式の可解性論じるとき1の冪根入ってないとまた話違ってくるからな。
引用するのはいいがその文章読むのに必要な部分がわかってないから、その部分だけ読むとトンチンカンな話になってしまう。
文章の意味が日本語として読めてるだけで数学の文章として意味がとれてないんだろう。
826(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)20:36 ID:llLaGKvq(12/12) AAS
>>825
1の冪根による拡大(円分拡大)の後、
aの冪根による拡大(クンマー拡大)を行うのは
それぞれアーベル拡大として実現できるからだろう
もちろん全体としては一般的にガロア群は非可換になる
827: 2019/10/14(月)21:04 ID:yDLeEzQX(3/4) AAS
>>826
まぁ多分それなんだとは思うんだけどね。
証明なんか読んでないだろうからその話の意味が通じるために必要な情報が何と何なのかわからんのだろう。
828: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)23:31 ID:w6tqRMw5(17/18) AAS
>>822
>cos(2π/11)のガロア群は位数5の巡回群だけど?
ああ、そうですね
コンテキスト(文脈)で、Q係数の一般5次代数方程式で、方程式の群が可解群になる最大の群が>>811に書いてある「高々位数が20の置換群(線形置換群)でなければならない」という話です(^^
829(3): 2019/10/14(月)23:38 ID:ceRjWFfM(1/4) AAS
>>821
>正しい答えは
>乗法群(Z/nZ)× (位数n-1)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。
一般的にはオイラーのφ函数を使ってφ(n)とあらわされる数になる。
830: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)23:42 ID:w6tqRMw5(18/18) AAS
>>825
(引用開始)
どんな文章をどう引用したのかわからんけど、Qに1の冪根全部加えた体を考えてその上の5次拡大に話を限定した時のQ上のGalois群とかなのかもしれん。
方程式の可解性論じるとき1の冪根入ってないとまた話違ってくるからな。
引用するのはいいがその文章読むのに必要な部分がわかってないから、その部分だけ読むとトンチンカンな話になってしまう。
文章の意味が日本語として読めてるだけで数学の文章として意味がとれてないんだろう。
(引用終り)
省5
831: 2019/10/14(月)23:47 ID:ceRjWFfM(2/4) AAS
>方程式の可解性論じるとき1の冪根入ってないとまた話違ってくるからな。
1の冪根の方程式が代数的に可解であることはガウスの先行研究で分かっていたので、ガロアは1の冪根を予め添加しておいてよいとしてるのですね。
ちなみにガウスの研究は当然ながらガロア理論の雛型にもなっている。
832(4): 2019/10/14(月)23:51 ID:ceRjWFfM(3/4) AAS
1のべき根の方程式が解けるといっても、勿論1のn乗根=1^{1/n} とするのはなしねw
1のn乗根を代数的に解いたとき、冪根指数としてあらわれるのは
φ(n)の約数のみ。根号の中身は1ではない複雑な数になる。
(整数論的に言うと、分岐する素数と関係がある。)
833(1): 2019/10/14(月)23:57 ID:yDLeEzQX(4/4) AAS
方程式考えるとき下の体が1の冪根全部含む時しか考えないわけないだろ?
なんでガロア理論の本まだ一冊ロクによめてすらいないのにそんないい加減な思い込みしてるんだよ?
俺が読んだ教科書の中だけに限定したってそんなデフォルト設定してる本なんかほとんどないわ。
834(1): 2019/10/14(月)23:59 ID:ceRjWFfM(4/4) AAS
正17角形の作図が定木とコンパスのみで可能⇔
1の17乗根の方程式が、平方根を繰り返し開いていくことのみによって解ける。
ガウスも正17角形の作図は自慢だったらしい。
ベッドの中で思いついたとのこと。
実質的にやってることはガロア理論の原型のようなこと。
頭の中だけで理論構成するのもガロアと共通している。
835(2): 2019/10/15(火)00:07 ID:OSBV4wpg(1) AAS
>方程式考えるとき下の体が1の冪根全部含む時しか考えないわけないだろ?
それだと円分体のガロア理論がナンセンスになるのでないですね。
整数論的にも大きな違いが生じる。
ガロアの論文で、冪根解法を論じる際に簡単のため
そう設定してるってだけです。
836(3): Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)05:25 ID:3uWjxYrs(1/10) AAS
>>829
>乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
そうでした。大失敗
837: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)06:22 ID:3uWjxYrs(2/10) AAS
>>835
要するに円分拡大とクンマー拡大に分けて考えてるってことだな
838(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)07:18 ID:9ROe+Kvi(1/9) AAS
>>829 (>>836)
ID:ceRjWFfMさん、レスありがとう
(引用開始)
>正しい答えは
>乗法群(Z/nZ)× (位数n-1)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
(引用終り)
省26
839(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)07:48 ID:9ROe+Kvi(2/9) AAS
>>824
めんどくさいやつだな
そうあせるな(^^
Qにaの5つの5乗根を添加した体をKとする
↓
1の5乗根の原始根をζ5と書く
あと、5√a(aの5乗根の実根)な
省17
840(2): 2019/10/15(火)08:06 ID:qksvMa12(1/5) AAS
おっちゃんです。
>>773
>本なら、アルティンとか、Coxとかもあるけどね(^^
実代数幾何でよく行われるという議論の原形になった実体の理論に興味があって、永田可換体論を買ってしまった。
読んで理解するのは長い道になりそうだ。まあ、他のことにも関心はあるので、気長に読み進めて行く。
ガロア理論を理解するだけなら群論に取り組んだ方がいいとは思うけど。
或いは啓蒙書でも足りていると思うけど。
省3
841: 2019/10/15(火)08:21 ID:qksvMa12(2/5) AAS
>>773
>>840の下から2行目の訂正:
>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。
→
>(一松信著 講談社 2016年再発行 ブルーバックス「四色問題」 254ページ参照)。
以前発行されたという初版もあるので注意。
いや〜、今まで全く知りませんでした。
842(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)10:06 ID:GY+TtPJn(1/4) AAS
>>840
おっちゃん、どうも、スレ主です。
>最近知ったことだけど、アペリーはむしろ計算機を援用する形でζ(3)の無理性を証明した可能性があるようですな
>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。
ああ、そうなん
一松信先生ね。懐かしいね
外部リンク:ja.wikipedia.org
省12
843(1): 2019/10/15(火)10:26 ID:qksvMa12(3/5) AAS
>>842
>>永田可換体論
>
>古すぎないか?
Hilbertの第17問題を解くためにArtinが構築したという順序体や実閉体
などの理論が詳細に書かれているのは、和書では永田可換体論だけらしい。
844(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)10:40 ID:GY+TtPJn(2/4) AAS
>>839
補足
いま議論している部分は、”べき根拡大”というやつね
下記が、参考になるだろう
はてなblog(URLがNGなので、キーワードでググれ(^^ )
ガロア理論のメモ(その6):べき根拡大と可解群 めもめも ※ 2017/09/27
(抜粋)
省19
845: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)10:53 ID:GY+TtPJn(3/4) AAS
>>843
『可換体論』か『可換環論』か忘れたが、永田 雅宜先生の本、見たことあるな
(内容は覚えていないが)
”数学セミナー 2019年11月号 特集= すごい反例 ヒルベルトの第14問題……黒田 茂”
が、永田 雅宜先生の話だね
(参考)
外部リンク[html]:www.nippyo.co.jp
省11
846: 2019/10/15(火)11:21 ID:qksvMa12(4/5) AAS
>>842
>>最近知ったことだけど、アペリーはむしろ計算機を援用する形でζ(3)の無理性を証明した可能性があるようですな
>>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。
>
>ああ、そうなん
まあ、私は有理性の判定や証明に計算機(家にあるのはパソコン)は全く使わずに、
はじめは得られた奇妙な論理とそれに基づく手計算でたまたまγの有理性を証明出来ただけだが、
省1
847: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)13:24 ID:GY+TtPJn(4/4) AAS
>>833-835
>ガロアの論文で、冪根解法を論じる際に簡単のため
>そう設定してるってだけです。
ID:yDLeEzQX さん、ID:ceRjWFfMさん、ID:OSBV4wpgさん
みなさんレベル高いね
全く、ご指摘の通り
”ガロアの論文で、冪根解法を論じる際に簡単のため”です
省2
848: 2019/10/15(火)17:36 ID:qksvMa12(5/5) AAS
それじゃ、おっちゃんもう寝る。
849(3): Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)19:38 ID:3uWjxYrs(3/10) AAS
>>839
>そうあせるな(^^
といいつつあせって地雷を踏んだ馬鹿w
>Qにaの5つの5乗根を添加した体をKとする
> ↓
>1の5乗根の原始根をζ5と書く
>あと、5√a(aの5乗根の実根)な
省19
850: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)19:43 ID:3uWjxYrs(4/10) AAS
AA省
851: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)19:52 ID:3uWjxYrs(5/10) AAS
>>849
>一般的にφ(n)=nにはならない
φ(1)=1だったな
852: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)19:59 ID:3uWjxYrs(6/10) AAS
>ID:yDLeEzQX さん、ID:ceRjWFfMさん、ID:OSBV4wpgさん
>みなさんレベル高いね
円分体Q(ζn)のガロア群が乗法群(Z/nZ)×になることの説明は
きっとハイレベル数学人の彼らがしてくれるだろう
馬鹿はもちろん分かってないw
分かってたら
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
省1
853(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)20:56 ID:9ROe+Kvi(3/9) AAS
>>829 補足
(引用開始)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。
一般的にはオイラーのφ函数を使ってφ(n)とあらわされる数になる。
(引用終り)
ID:ceRjWFfMさん、レベル高いね
省5
854(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)20:57 ID:9ROe+Kvi(4/9) AAS
>>853
訂正:つづき→つづく
つづき
ところで
>>838
>外部リンク:hooktail.sub.jp
> 1のn乗根 (Joh著) 物理のがきしっぽ
省17
855: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)20:59 ID:9ROe+Kvi(5/9) AAS
>>854
つづき
外部リンク:en.wikipedia.org
Cyclic group
(抜粋)
Additional properties
If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n,φ(n)) = 1.[13]
省13
856: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)21:13 ID:3uWjxYrs(7/10) AAS
>>854
馬鹿は乗法群 (Z/6Z)×を全然知らんようだwww
つまり
「円分体Q(ζn)のガロア群が乗法群(Z/nZ)×になる」
とはどういうことか、全然分かってないwww
そんな馬鹿が知ったかぶってガロア理論語るなよ
みっともないwwwwwww
857: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)21:26 ID:3uWjxYrs(8/10) AAS
>>853
>>たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。
>そうそう、そうでした。
相槌打ってるけど全然分かってないな
なんで0はともかく、2や3や4は入ってないのか
それは
2×3=3×2=0
省9
858(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)21:51 ID:9ROe+Kvi(6/9) AAS
>>849
>φ(5)=4だよ
>だいたい一般的にφ(n)=nにはならない
>pが素数のときφ(p)=p-1
そうそう、そうでした
昔読んだんだがね、十分理解できていないんだね(^^;
下記の”拡大体の基底に関する注意”ですね
省16
859(3): Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)22:06 ID:3uWjxYrs(9/10) AAS
>>858
見当違いなことばかり書く馬鹿に質問だ
円分体の同型写像を具体的に構成せよ
860(1): ◆QZaw55cn4c 2019/10/15(火)22:07 ID:6wySpVJX(1) AAS
>>854
>オイラーのファイ関数
φ関数とは書きますけれども…普通、トーシェント関数ではないでしょうか
861: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)22:34 ID:9ROe+Kvi(7/9) AAS
>>838
そうか
(>>818の訂正版)
と訂正書いたけど、
最初の>>818で合っていたんだね
1のn乗根を添加の話
理解不十分で、記憶だけで書くから、だめなんだな
省1
862: Mara Papiyas ◆y7fKJ8VsjM 2019/10/15(火)23:18 ID:3uWjxYrs(10/10) AAS
>>859に答えられない馬鹿はガロア理論が全然理解できてないwww
863(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)23:51 ID:9ROe+Kvi(8/9) AAS
>>860
C++さん、どうも。スレ主です。
>>オイラーのファイ関数
>φ関数とは書きますけれども…普通、トーシェント関数ではないでしょうか
最近は、トーシェント関数が普通かもしれませんが
以前は、”φ関数”だけで、”トーシェント関数”という呼び方は、あまり使われていなかったと思います
まあ、カナで”ファイ関数”という表記は珍しいですが、”物理のがきしっぽ”の記事なので、読者レベルを考えての表記でしょう
省29
864: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/15(火)23:55 ID:9ROe+Kvi(9/9) AAS
>>863
つづき
Joseph Sylvester先生は、下記で行列を発明したことで有名です
外部リンク:en.wikipedia.org
James Joseph Sylvester
(抜粋)
Legacy
省11
865: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)00:02 ID:OrOarbJT(1/12) AAS
>>863
オイラーのφ関数は、最初に1が出たあとは、全部偶数なんですね(^^;
外部リンク:ja.wikipedia.org
オイラーのφ関数
(抜粋)
オイラーのトーシェント関数(オイラーのトーシェントかんすう、英: Euler's totient function)とは、正の整数 n に対して、 n と互いに素である 1 以上 n 以下の自然数の個数 φ(n) を与える数論的関数 φ である。
1 から 20 までの値は以下の通りである。
省10
866(1): 2019/10/16(水)00:25 ID:eqCH01Ub(1/4) AAS
オイラーのトーシェント関数
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8
をスレ主は筆算で確認できますか?
867: 2019/10/16(水)00:33 ID:eqCH01Ub(2/4) AAS
n=21のときのオイラーのトーシェント関数は
3,6,9,12,15,18,21
と
7,14,21
以外なので21-7-3+1=12
省1
868: 2019/10/16(水)01:05 ID:eqCH01Ub(3/4) AAS
オイラーのトーシェント関数とは
nに対し1からnまでの整数でnと互いに素であるような数の個数
です
n=21なら、1,2,4,5,8,10,11,13,15,17,19,21の12個になります
互いに素とは、二つの数の最大公約数が1であるということです
869(1): 2019/10/16(水)01:06 ID:eqCH01Ub(4/4) AAS
面白いですね
870: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)05:18 ID:/906omXv(1/12) AAS
馬鹿は円分体の同型写像を具体的に構成する宿題をやったか?
それともガロア理論諦めるか?
後者をすすめるぞ 貴様には向学心がないからな
次からスレタイ変えろよ みっともないぞw
871(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:44 ID:OrOarbJT(2/12) AAS
>>866
ID:eqCH01Ubさん、どうも。スレ主です。
筆算でね(^^
出来ると思うよ、やらないけど
>>869
>面白いですね
面白いよね
省1
872: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)07:48 ID:/906omXv(2/12) AAS
>>871
馬鹿、ガロア理論を諦めるwwwwwww
873(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:51 ID:OrOarbJT(3/12) AAS
>>859
>円分体の同型写像を具体的に構成せよ
めんどくさいやつだな
そうあせるな(^^
円分体は、草場公邦のP131にあるよ
そこから、手でコピータイプしても良いが
それでは、みなさん面白くないでしょw(^^;
省23
874(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:51 ID:OrOarbJT(4/12) AAS
>>873
つづき
これは、「5次以上の方程式には解の公式が存在しない」ということを証明するために編み出された理論であり、現代代数の先駆けとなったスゴモノである。(ちなみに誤解を最小限にするために言っておくと、何次方程式でも必ず複素数の解を持っている。
問題は、それをオートマチックに求める公式があるかどうかであり、5次以上にはそういう便利な公式がない、というのがガロアの定理なのである) 。
ぼくは、数学科のときは代数を専攻したので、ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。
おおざっぱには捉えることはできたんだけど、機微が掴めておらず、少なくとも「アタリマエ」になるほどには理解していなかったのである。( そんなだから数学の道に挫折することになったのだけどね)。
ところが、最近になってこの『ガロワと方程式』を読んで、急に視界が開け、「アタリマエ」とまではいわないけど、「よくできた自然な理論だなあ」というところまで理解できるようになってしまったのだ。
省3
875(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:54 ID:OrOarbJT(5/12) AAS
>>874
つづき
(Brent Everitt先生、これお薦めです。カラーの絵が豊富で分り易い。(練習問題の解答が無くなっているね(^^ ))
外部リンク:arxiv.org
Galois Theory - a first course
Brent Everitt
(Submitted on 12 Apr 2018)
省22
876: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:56 ID:OrOarbJT(6/12) AAS
>>875 文字化け訂正
x^5 ? 2
↓
x^5 - 2
などね
-の記号が、多分コードが違うので、目では見分けが付かず、この板では文字化けするんだ(^^;
877: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)07:57 ID:/906omXv(3/12) AAS
>>873-875
馬鹿は、文章を読まずにコピペして誤魔化すから
いつまでたっても書いてあることが理解できないw
別に草場の本なんか見なくてもネットにもあるぞ
それ読め と・に・か・く・よ・め
878(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)11:37 ID:86h80x0A(1/8) AAS
めんどくさいやつだな
そうあせるな(^^
円分体って、単純そうで、結構深いよね(゜ロ゜;
”クロネッカー=ウェーバーの定理は、基礎体が有理数体であるときを考えているが、基礎体を虚二次体にしたときも、同様なことが成立するかを問うたのが、クロネッカーの青春の夢である。”
(参考)
外部リンク:ja.wikipedia.org
クロネッカー・ウェーバーの定理
省15
879: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)11:38 ID:86h80x0A(2/8) AAS
>>878
つづき
外部リンク:en.wikipedia.org
Kronecker?Weber theorem
(抜粋)
In algebraic number theory,
it can be shown that every cyclotomic field is an abelian extension of the rational number field Q,
省11
880(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:16 ID:86h80x0A(3/8) AAS
めんどくさいやつだな
そうあせるな(^^
円分体って、単純そうで、結構深いよね(゜ロ゜;
乗法群、Group scheme of roots of unity (^^
外部リンク:ja.wikipedia.org
乗法群
(抜粋)
省9
881(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:17 ID:86h80x0A(4/8) AAS
>>880
つづき
外部リンク:en.wikipedia.org
Multiplicative group
(抜粋)
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
・the group under multiplication of the invertible elements of a field,[1] ring, or other structure for which one of its operations is referred to as multiplication.
省9
882(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:18 ID:86h80x0A(5/8) AAS
>>881
つづき
外部リンク:en.wikipedia.org
Group scheme
(抜粋)
Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems.
The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
省7
883(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)16:11 ID:86h80x0A(6/8) AAS
めんどくさいやつだな
そうあせるな(^^
円分体って、単純そうで、結構深いよね(゜ロ゜;
位数4の群は、確か二つしかない
位数4の巡回群とクライン群と
下記(後述)の「位数 30 以下の群の分類」
P3 より、C4, C2 x C2(クライン群) の二つ
省21
884(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)16:15 ID:86h80x0A(7/8) AAS
>>883
つづき
(参考:方程式のガロア理論に役立ちそうなPDF見繕い)
外部リンク:www.isc.meiji.ac.jp
Kazuhiko KURANO Department of Mathematics School of Science and Technology Meiji University
外部リンク[htm]:www.isc.meiji.ac.jp
研究室の学生の卒業論文・修士論文・博士論文
省14
885(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)16:31 ID:86h80x0A(8/8) AAS
>>884 補足
>種本があって、お互いその種本を見ている可能性もある
下記「1893 コールが位数660までの単純群を分類する」とある
たしか、1900年ころの群論の本で、後ろに位数100くらいまでの有限群のリストがついていたって話
読んだ記憶があるね。ディクソン先生の群論の本って、覚えているのだが
五味健作、鈴木通夫、原田耕一郎などに、関連の記述があるかもね
(下記外部リンクのURLを張りたいが、URLが大杉だとアク禁くらう恐れがあるので省略。自分でリンク探して飛んでくれ(^^ )
省16
886(1): 2019/10/16(水)18:37 ID:z0qt+ZiN(1) AAS
演習で「位数200以下の単純群をすべて挙げよ」という問題があった
「168の時はアレだけに限られる」が難しくて、次の週までに解けなかった思い出
887(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:22 ID:/906omXv(4/12) AAS
>>878
>めんどくさいやつだな
学習がめんどくさいなら、数学やめていいぞ
誰も貴様に数学やれなんて頼んでないから
>そうあせるな
あせって>>839で
>1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る
省14
888: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:23 ID:/906omXv(5/12) AAS
>>880
>乗法群
今ごろそんなの調べてるの?w
貴様、今迄いったい何やってたんだ?w
>n を法とする整数の乗法群(英語版)は群Z/nZの可逆元が乗法についてなす群である。
>n が素数でないとき、0 の他に可逆でない元が存在する。
「可逆」の意味、分かってるか?
省5
889(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:25 ID:/906omXv(6/12) AAS
>>883-885
貴様、検索もロクにできないのか?
「円分体」「同型写像」のキーワードで
google検索かけたら速攻で見つかったぞwww
■美的数学のすすめ(はてなブログ)
円分体のガロア群
「Q(ζn)/Qの自己同型をσとすると、
省6
890(2): Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:49 ID:/906omXv(7/12) AAS
大体、馬鹿は自分が検索した論文も読んでないだろw
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
891(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)20:48 ID:OrOarbJT(7/12) AAS
>>886
ID:z0qt+ZiN さん、どうも。スレ主です。
>演習で「位数200以下の単純群をすべて挙げよ」という問題があった
>「168の時はアレだけに限られる」が難しくて、次の週までに解けなかった思い出
えー
明治大 蔵野研では、位数30までで、学部卒業研究だとか
それが、演習で「位数200以下の単純群をすべて挙げよ」か
省1
892: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)21:36 ID:OrOarbJT(8/12) AAS
>>891
>「168の時はアレだけに限られる」
これか
外部リンク:ja.wikipedia.org
168
(抜粋)
・168 は合成数であり、約数は 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84 と 168 である。
省26
上下前次1-新書関写板覧索設栞歴
あと 110 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.048s