[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
700(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:15 ID:C6KNw7bs(1/3) AAS
>>699
>> 出た目の数をX とすると
>だからスレ主が言っている「確率変数」って単に箱の中の値を知らないって
>ことなんだよね?その値を確率的に当てると
いいえ、残念ながら違いますよ
「確率変数」を、くるくる回り続けるサイコロだとか、
「確率変数」ではなく、定数(>>689)だとか
省27
701(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:40 ID:C6KNw7bs(2/3) AAS
>>699
>時枝戦略では列を選ぶ行為だけが確率的試行である
残念ながら、そこも違いますね
下記、時枝記事で、下記の「まったく自由」を制限して
各箱には、必ず一定の確率的手法、例えばコイントス、サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・などなどで、箱に数を入れるとします
(”制限時枝問題∈時枝問題” であることを念押ししておきます)
なお、これは<i.i.d. 独立同分布>(>>614ご参照)です
省18
702(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/04(水)11:45 ID:C6KNw7bs(3/3) AAS
>>701 補足
1つのサイコロを順に、無限回振るのはだめと言われるならば
可算無限個のサイコロを用意し、サイコロを振る無限の人を用意しておけば、箱にサイコロの目を入れ終えることは可能ですよ
そして、箱の数を、現代数学では確率変数と考えることができることは、>>700に示しました
時枝さんも記事の後半に書かれている通りです(下記)
(参考)
スレ47 2chスレ:math
省9
703(2): 2019/09/04(水)18:32 ID:vmK0wdLu(2/4) AAS
>>700
> 「確率変数」ではなく、定数
ある1つの数が確率1で出るなら「定数」扱いできるでしょう
>>701
> 残念ながら、そこも違いますね
それはいつものスレ主のその場しのぎのでまかせですね
「時枝戦略」では列を選ぶ行為だけが確率的試行
省24
705: 2019/09/04(水)19:12 ID:4z5/pAq/(11/12) AAS
>>700
>サイコロでの、確率変数
>X1,X2,・・・ たち
>それらの平均
>(X1+X2+・・・+Xn)/n が大数の法則に従う
時枝記事で設定する数列は
勝手な数列でよいので
省4
709(1): 2019/09/04(水)21:32 ID:1JIP4/Ke(2/6) AAS
>>701
>それで、任意のi番目の箱は、確率変数Xiとして扱えます(>>700ご参照)
扱えても勝つ戦略にはならない
戦略の選択権は回答者側にあり、わざわざそんな戦略を選ぶバカはいない
一方、100列の列indexを確率変数とする戦略(時枝戦略)なら99/100以上の勝率で勝てる
なんでそんなにバカなの?
710(1): 2019/09/04(水)21:41 ID:1JIP4/Ke(3/6) AAS
>>702
>そして、箱の数を、現代数学では確率変数と考えることができることは、>>700に示しました
考えることができてもそれで勝てないなら考えるだけ無駄
いい加減に学習しろサル
721(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/05(木)06:50 ID:RfCUEXWL(1/10) AAS
”確率変数”については、下記 渡辺澄夫 東工大が分り易い
”関数を出力と同一視(混同)する(X=X(w))”、出力=関数値です
サイコロの目がサイコロ(振る)の試行に対応して値が決まる関数で、1〜6が関数値です
そして、例えば4とか5とか、各関数値が”確率変数”です(^^
”確率変数”だからと言って、ころころ変化するわけではない
そういう意味では、1つの試行(サイコロを振る)で、関数値が4と決まれば、それは変化しません!(^^
(>>700 大数の法則中の確率変数も見て下さい(^^ )
省36
724(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/05(木)07:03 ID:RfCUEXWL(3/10) AAS
(>>700-702より)
時枝記事の「まったく自由」を制限して
各箱には、必ず一定の確率的手法、例えば、サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・などなどで、箱に数を入れるとします
(”制限時枝問題∈時枝問題” であることを念押ししておきます)
なお、これは<i.i.d. 独立同分布>(>>614ご参照)です
それで、任意のi番目の箱は、確率変数Xiとして扱えます(>>700ご参照)
”サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・”
省26
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s