[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
690(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/22(金)11:49 ID:WSdp8+VY(4/12) AAS
>>546 補足追加
オイラー定数γ(=lim[n→∞](1+1/2+...+1/n-ln(n)))
(引用終り)
下記ガウス記号にならって、
小数部分: 実数 x に対して,x?[x] を、 D[x] と書く(Decimal=小数より)
1+1/2+...+1/nの少数部分D[1+1/2+...+1/n]で、これは有理数だが、既約p/qと考えた時、q→∞はすぐ分かる
(下記のオイラー積を思い出せば、良い)
省24
699(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/22(金)15:17 ID:WSdp8+VY(10/12) AAS
>>690
>オイラー定数γ(=lim[n→∞](1+1/2+...+1/n-ln(n)))
>背理法とかで、「オイラー定数γは有理数」とかしてみたい気がするけど
>小数部分 lim[n→∞]D[1+1/2+...+1/n]で、分母”qはすべての素数の積”で頓挫する
全く蛇足だが(^^
背理法仮定: γ =p'/q' とおける (p'、q'は互いに素な自然数)
としたいけど
省6
708(1): 2019/03/22(金)19:03 ID:fbJ3xrOI(1) AAS
>>690 >>699
ヌスィは目についたところだけ考える愚を犯してるね
調和級数がオイラー積で表せたって意味ないよ
対数を引くこと忘れるのは馬鹿
ついでにいうと、γに収束する有理数列も考えられる
γn=1+…+1/(n-1)-1/n-…-1/(n^2-1)
lim(n→∞)γn=γ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s