[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
399(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/16(土)22:18 ID:B5CZ4/Lr(10/13) AAS
>>398
つづき
(抜粋)
3. 整礎原理
まず次の考え方をとることにする。
自分自身を含むような集合は存在しない。
これを採用するのは、必ずしもパラドクスを避けるためではない。
省17
400: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/16(土)22:19 ID:B5CZ4/Lr(11/13) AAS
>>399
つづき
整礎原理
a1∋a2∋a3∋a4∋a5∋…とどこまでも続くような集合は存在しない。
整礎原理は、どんな集合が存在するのかについては積極的に主張していないけれど、ここから集合の間に成立している秩序が見えてくる。
まず自分自身を含んでいたり包含関係が循環することがないため、「∈」について順序関係が成立することになる。つまり包含関係「∈」に基づく「より単純な集合」←→「より複雑な集合」という相対的な位置づけを与えることができる。しかも包含関係「∈」を内側にたどっていくと必ずどこかで終わるので、「より単純な集合」←→「より複雑な集合」のうち、「より単純な集合」の方向はどこかで終点に至る。
整礎原理の成り立つ集合世界では、もっとも単純な集合から始まってだんだん複雑な集合に向かっていくという整然とした秩序が存在する(この秩序は集合の要素数の大小関係とは異なる。たとえば0∈N∈{N})。
省3
401(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/16(土)22:20 ID:B5CZ4/Lr(12/13) AAS
>>399
つづき
正則性公理
反復的集合観に先立って次の整礎原理を述べた。
整礎原理
a1∋a2∋a3∋a4∋a5∋…とどこまでも続くような集合は存在しない。
これを次のように公理化する。
省15
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s