[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
151
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/10(日)11:09 ID:rk/29Zdt(8/28) AAS
or any s ∈ S. In other words, a relation is well founded if
(∀ S ⊆ X)[S ≠ Φ → (∃ m ∈ S)(∀ s ∈ S) ¬ (sRm)].
Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.

Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2]

In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.

In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x.
The axiom of regularity, which is one of the axioms of Zermelo?Fraenkel set theory, asserts that all sets are well-founded.
省2
152
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/03/10(日)11:10 ID:rk/29Zdt(9/28) AAS
>>151 これ失敗でボツな(^^;

貼り直し
>>150
つづき
(参考引用)
外部リンク:en.wikipedia.org
(抜粋)
省11
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s