[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
753: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/23(土) 11:36:23.71 ID:ZJxlATSv つづき https://ja.wikipedia.org/wiki/%E3%83%AF%E3%82%A4%E3%83%AB%E3%82%BA%E3%81%AB%E3%82%88%E3%82%8B%E3%83%95%E3%82%A7%E3%83%AB%E3%83%9E%E3%83%BC%E3%81%AE%E6%9C%80%E7%B5%82%E5%AE%9A%E7%90%86%E3%81%AE%E8%A8%BC%E6%98%8E ワイルズによるフェルマーの最終定理の証明 (抜粋) 目次 1 ワイルズの証明以前の進展 1.1 フェルマーの最終定理 1.2 ワイルズ以前の特定の指数に関する部分的な解 1.3 谷山・志村・ヴェイユ予想 1.4 フライ曲線 1.5 フライ曲線を用いたフェルマーの最終定理への挑戦 1.6 リベットの定理 フライ曲線 上記の議論とは独立に、1960年代後半、Yves Hellegouarchがフェルマー予想の解(a,b,c)を全く別の数学的概念である楕円曲線と関連付けることを思いついた[6]。この曲線は(x, y)座標平面上の以下の関係を満たすすべての点によって構成されている。 y^{2}=x(x-a^{n})(x+b^{n}) このような楕円曲線は特殊な性質をもっている。これは等式の数に高次の指数が出現するためであり、またa^n + b^n = c^nもまた n次の指数であるためである。 1982-1985年において、ゲルハルト・フライはHellegouarchの曲線の特殊な性質に着目し、これは現在フライ曲線(英語版)と呼ばれている。フライ曲線はモジュラーでない楕円曲線がフェルマーの最終定理に対する反例を与えることになるというアイディアを提示することでフェルマーの最終定理と谷山・志村予想の橋渡しとなった。 より平易な言葉で言えば、フライの研究はフェルマーの最終定理を否定するような数の組(a, b, c, n)は、谷山・志村予想を否定することも可能であろうと考えるに足るような理由を与えた。よって、もし谷山・志村予想が真であれば、フェルマーの最終定理を否定するような数の組も存在しないであろう。よってフェルマーの最終定理もまた真であろうと考えられるのである。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/753
754: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/23(土) 11:37:21.69 ID:ZJxlATSv >>753 つづき (数学的にはこの予想は有理数の係数を持つ楕円曲線は、単に等式を与えるだけでなく、モジュラー関数を用いる方式で x y 座標上にパラメトリック方程式として構成することも可能ということを述べている。 つまりこの予想はQ上のすべての楕円曲線はモジュラー楕円曲線(英語版)でなければならないということを言っており、フェルマーの最終定理にゼロでない2より大きい a, b, c, n が存在する場合はこれがモジュラーでない楕円曲線に対応するため、矛盾となるのである) そのため、谷山・志村予想を証明・反証した場合はフェルマーの最終定理もまた同時に証明・反証されることになるのである[7]。 1985年にはジャン・ピエール・セールがフライ曲線がモジュラーでないことを部分的に証明した。セールは完全な証明を与えなかったので、証明に欠けていた部分はイプシロン予想(英語版)として知られるようになった。 これは現在、リベットの定理(英語版)として知られている。セールの主な関心は(谷山・志村予想を暗示する)モジュラーガロワ表現上のセール予想というもっと野心的な予想にあった。セールの証明は完璧ではなかったものの、半安定状態の楕円曲線とフェルマーの最終定理のつながりをほぼ確実なものとするに至った。 4.1 ワイルズの証明の解説 ・Overview of Wiles proof, accessible to non-experts, by Henri Darmon http://www.ams.org/publications/journals/notices/201703/rnoti-p209.pdf ・very short summary of the proof by Charles Daney https://web.archive.org/web/20081210102243/http://cgd.best.vwh.net/home/flt/flt08.htm ・140 page students work-through of the proof, with exercises, by Nigel Boston https://www.math.wisc.edu/~boston/869.pdf 以上 http://rio2016.5ch.net/test/read.cgi/math/1551963737/754
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s