[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
728: 132人目の素数さん [sage] 2019/03/23(土) 09:29:38.52 ID:VZ0geX5W 周期の概念が作られた背景は、代数的数と超越数の判断の1つの懸け橋にするためだったと思うが。 http://rio2016.5ch.net/test/read.cgi/math/1551963737/728
730: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/23(土) 09:44:34.38 ID:ZJxlATSv >>728 γ などは周期でない数の尤もらしい候補 https://ja.wikipedia.org/wiki/%E5%91%A8%E6%9C%9F_(%E6%95%B0%E4%BD%93%E7%B3%BB) 周期 (数体系) 数学の特に解析数論周辺分野における周期(しゅうき、英: period)は、ある種の代数的な領域上でとった代数函数の積分として表される複素数を言う。周期全体の成す集合は、和と積に関して閉じており、環を成す。 Maxim Kontsevich and Don Zagier (2001) は周期の概念を導入し、周期に関するいくつかの予想について述べた論説である。 目次 1 定義 2 例 3 分類の目的 定義 与えられた実数が周期であるとは、それが有理数係数多項式不等式として与えられたユークリッド空間内の領域の体積の差として与えられるときに言う。より一般に、与えられた複素数が周期であるとは、その実部および虚部がともに周期となるときに言う。 代数的数係数の有理函数に対して、代数的数係数の多項式不等式で与えられる ?n 内の領域上でとった、絶対収束積分値もまた周期となる(これは、そのような積分や代数的無理数が適当な領域上の面積として表せることによる)。 例 代数的数以外では、以下の数が周期の例となることが知られている: ・任意の代数的数の自然対数 ・円周率 π ・有理数を引数とする楕円積分 ・任意のゼータ定数(英語版)(整数引数に対するリーマンゼータ函数の特殊値)および任意の多重ゼータ値(英語版) ・代数的数における超幾何函数の特殊値 ・自然数 p, q に対するガンマ函数の値 Γ(p/q)q 周期でない実数の例は、チャイティンの定数 Ω によって与えられる。計算可能数(英語版)であって周期となるあるいはならない自然な例というのは今のところ知られていないが、人工的な例はカントールの対角線論法を用いて容易に作れる。 ネイピア数 e, 1/π, オイラー?マスケローニ定数 γ などは周期でない数の尤もらしい候補と考えられる。 分類の目的 周期は、代数的数と超越数の間を埋める橋渡しとなるものである。代数的数のクラスは多くのよく知られた数学定数を含めるためには狭すぎ、また超越数の全体は可算でなくその元は一般には計算可能でない。これに対し周期全体の成す集合は可算であり、任意の周期は計算可能[1]で、特に決定可能(英語版)である。 http://rio2016.5ch.net/test/read.cgi/math/1551963737/730
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s